20 research outputs found

    Inflammatory response in mixed viral-bacterial community-acquired pneumonia

    Get PDF
    BACKGROUND: The role of mixed pneumonia (virus + bacteria) in community-acquired pneumonia (CAP) has been described in recent years. However, it is not known whether the systemic inflammatory profile is different compared to monomicrobial CAP. We wanted to investigate this profile of mixed viral-bacterial infection and to compare it to monomicrobial bacterial or viral CAP. METHODS: We measured baseline serum procalcitonin (PCT), C reactive protein (CRP), and white blood cell (WBC) count in 171 patients with CAP with definite etiology admitted to a tertiary hospital: 59 (34.5%) bacterial, 66 (39.%) viral and 46 (27%) mixed (viral-bacterial). RESULTS: Serum PCT levels were higher in mixed and bacterial CAP compared to viral CAP. CRP levels were higher in mixed CAP compared to the other groups. CRP was independently associated with mixed CAP. CRP levels below 26 mg/dL were indicative of an etiology other than mixed in 83% of cases, but the positive predictive value was 45%. PCT levels over 2.10 ng/mL had a positive predictive value for bacterial-involved CAP versus viral CAP of 78%, but the negative predictive value was 48%. CONCLUSIONS: Mixed CAP has a different inflammatory pattern compared to bacterial or viral CAP. High CRP levels may be useful for clinicians to suspect mixed CAP

    Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: a prospective cohort study, systematic review and individual patient data meta-analysis

    No full text
    Introduction: Procalcitonin (PCT) is helpful for diagnosing bacterial infections. The diagnostic utility of PCT has not been examined thoroughly in critically ill patients with suspected H1N1 influenza. Methods: Clinical characteristics and PCT were prospectively assessed in 46 patients with pneumonia admitted to medical ICUs during the 2009 and 2010 influenza seasons. An individual patient data meta-analysis was performed by combining our data with data from five other studies on the diagnostic utility of PCT in ICU patients with suspected 2009 pandemic influenza A(H1N1) virus infection identified by performing a systematic literature search. Results: PCT levels, measured within 24 hours of ICU admission, were significantly elevated in patients with bacterial pneumonia (isolated or coinfection with H1N1; n = 77) (median = 6.2 g/L, interquartile range (IQR) = 0.9 to 20) than in patients with isolated H1N1 influenza pneumonia (n = 84; median = 0.56 g/L, IQR = 0.18 to 3.33). The area under the curve of the receiver operating characteristic curve of PCT was 0.72 (95% confidence interval (CI) = 0.64 to 0.80; P < 0.0001) for diagnosis of bacterial pneumonia, but increased to 0.76 (95% CI = 0.68 to 0.85; P < 0.0001) when patients with hospital-acquired pneumonia and immune-compromising disorders were excluded. PCT at a cut-off of 0.5 g/L had a sensitivity (95% CI) and a negative predictive value of 80.5% (69.9 to 88.7) and 73.2% (59.7 to 84.2) for diagnosis of bacterial pneumonia, respectively, which increased to 85.5% (73.3 to 93.5) and 82.2% (68.0 to 92.0) in patients without hospital acquired pneumonia or immune-compromising disorder. Conclusions: In critically ill patients with pneumonia during the influenza season, PCT is a reasonably accurate marker for detection of bacterial pneumonia, particularly in patients with community-acquired disease and without immune-compromising disorders, but it might not be sufficient as a stand-alone marker for withholding antibiotic treatment

    Ability of procalcitonin to discriminate infection from non-infective inflammation using two pleural disease settings.

    Get PDF
    Abstract Procalcitonin has been shown to be useful in separating infection from non-infective disorders. However, infection is often paralleled by tissue inflammation. Most studies supporting the use of procalcitonin were confounded by more significant inflammation in the infection group. Few studies have examined the usefulness of procalcitonin when adjusted for inflammation. Pleural inflammation underlies the development of most exudative effusions including pleural infection and malignancy. Pleurodesis, often used to treat effusions, involves provocation of intense aseptic pleural inflammation. We conducted a two-part proof-of-concept study to test the specificity of procalcitonin in differentiating infection using cohorts of patients with pleural effusions of infective and non-infective etiologies, as well as subjects undergoing pleurodesis. Methods We measured the blood procalcitonin level (i) in 248 patients with pleural infection or with non-infective pleural inflammation, matched for severity of systemic inflammation by C-reactive protein (CRP), age and gender; and (ii) in patients before and 24–48 hours after induction of non-infective pleural inflammation (from talc pleurodesis). Results 1) Procalcitonin was significantly higher in patients with pleural infection compared with controls with non-infective effusions (n = 32 each group) that were case-matched for systemic inflammation as measured by CRP [median (25–75%IQR): 0.58 (0.35–1.50) vs 0.34 (0.31–0.42) µg/L respectively, p = 0.003]. 2) Talc pleurodesis provoked intense systemic inflammation, and raised serum CRP by 360% over baseline. However procalcitonin remained relatively unaffected (21% rise). 3) Procalcitonin and CRP levels did not correlate. In 214 patients with pleural infection, procalcitonin levels did not predict the survival or need for surgical intervention. Conclusion Using a pleural model, this proof-of-principle study confirmed that procalcitonin is a biomarker specific for infection and is not affected by non-infective inflammation. Procalcitonin is superior to CRP in distinguishing infection from non-infective pleural diseases, even when controlled for the level of systemic inflammation
    corecore