1,544 research outputs found

    On the penetration of meridional circulation below the solar convection zone

    Full text link
    Meridional flows with velocities of a few meters per second are observed in the uppermost regions of the solar convection zone. The amplitude and pattern of the flows deeper in the solar interior, in particular near the top of the radiative region, are of crucial importance to a wide range of solar magnetohydrodynamical processes. In this paper, we provide a systematic study of the penetration of large-scale meridional flows from the convection zone into the radiative zone. In particular, we study the effects of the assumed boundary conditions applied at the convective-radiative interface on the deeper flows. Using simplified analytical models in conjunction with more complete numerical methods, we show that penetration of the convectively-driven meridional flows into the deeper interior is not necessarily limited to a shallow Ekman depth but can penetrate much deeper, depending on how the convective-radiative interface flows are modeled.Comment: 13 pages, 5 figures. Subitted to Ap

    Dynamics of the fast solar tachocline: I. Dipolar field

    Full text link
    One possible scenario for the origin of the solar tachocline, known as the "fast tachocline", assumes that the turbulent diffusivity exceeds eta>10^9 cm^2/s. In this case the dynamics will be governed by the dynamo-generated oscillatory magnetic field on relatively short timescales. Here, for the first time, we present detailed numerical models for the fast solar tachocline with all components of the magnetic field calculated explicitly, assuming axial symmetry and a constant turbulent diffusivity eta and viscosity nu. We find that a sufficiently strong oscillatory poloidal field with dipolar latitude dependence at the tachocline-convective zone boundary is able to confine the tachocline. Exploring the three-dimensional parameter space defined by the viscosity in the range log(nu)=9-11, the magnetic Prandtl number in the range Prm=0.1-10, and the meridional flow amplitude (-3 to +3 cm/s), we also find that the confining field strength B_conf, necessary to reproduce the observed thickness of the tachocline, increases with viscosity nu, with magnetic Prandtl number nu/eta, and with equatorward meridional flow speed. Nevertheless, the resulting B_conf values remain quite reasonable, in the range 10^3-10^4 G, for all parameter combinations considered here. The thickness of the tachocline shows a marked dependence on both time and latitude. A comparison with seismic constraints suggests that best agreement with our models is achieved for the highest values of nu and Prm considered here.Comment: 11 page

    Phase Transformations in Binary Colloidal Monolayers

    Full text link
    Phase transformations can be difficult to characterize at the microscopic level due to the inability to directly observe individual atomic motions. Model colloidal systems, by contrast, permit the direct observation of individual particle dynamics and of collective rearrangements, which allows for real-space characterization of phase transitions. Here, we study a quasi-two-dimensional, binary colloidal alloy that exhibits liquid-solid and solid-solid phase transitions, focusing on the kinetics of a diffusionless transformation between two crystal phases. Experiments are conducted on a monolayer of magnetic and nonmagnetic spheres suspended in a thin layer of ferrofluid and exposed to a tunable magnetic field. A theoretical model of hard spheres with point dipoles at their centers is used to guide the choice of experimental parameters and characterize the underlying materials physics. When the applied field is normal to the fluid layer, a checkerboard crystal forms; when the angle between the field and the normal is sufficiently large, a striped crystal assembles. As the field is slowly tilted away from the normal, we find that the transformation pathway between the two phases depends strongly on crystal orientation, field strength, and degree of confinement of the monolayer. In some cases, the pathway occurs by smooth magnetostrictive shear, while in others it involves the sudden formation of martensitic plates.Comment: 13 pages, 7 figures. Soft Matter Latex template was used. Published online in Soft Matter, 201

    [N]pT Monte Carlo Simulations of the Cluster-Crystal-Forming Penetrable Sphere Model

    Full text link
    Certain models with purely repulsive pair interactions can form cluster crystals with multiply-occupied lattice sites. Simulating these models' equilibrium properties is, however, quite challenging. Here, we develop an expanded isothermal-isobaric [N]pT[N]pT ensemble that surmounts this problem by allowing both particle number and lattice spacing to fluctuate. We apply the method with a Monte Carlo simulation scheme to solve the phase diagram of a prototypical cluster-crystal former, the penetrable sphere model (PSM), and compare the results with earlier theoretical predictions. At high temperatures and densities, the equilibrium occupancy nceqn_{\mathrm{c}}^{\mathrm{eq}} of face-centered cubic (FCC) crystal increases linearly. At low temperatures, although nceqn_{\mathrm{c}}^{\mathrm{eq}} plateaus at integer values, the crystal behavior changes continuously with density. The previously ambiguous crossover around T∼0.1T\sim0.1 is resolved
    • …
    corecore