75 research outputs found

    Effects of low carbohydrate diets high in red meats or poultry, fish and shellfish on plasma lipids and weight loss

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low carbohydrate diets (LCDs) have been demonstrated to be effective tools for promoting weight loss and an improved plasma lipid profile. Such diets are often associated with increased meat consumption, either poultry, fish, and shellfish (PFS), which are generally high in polyunsaturated fat (PUFA) or red meats (RM), generally high in saturated fat (SFA). The fatty acid profile and content of a diet may influence the plasma lipid profile of humans. This study examined whether the type of meat consumed could influence the outcome of an LCD.</p> <p>Methods</p> <p>Moderately obese subjects consumed two different LCDs as part of a weight loss regimen: 1) a diet high in foods of mammalian origin (RM) intended to contain more SFA, or 2) a diet high in PFS intended to contain more PUFA. Diet dependent changes in body weight, nutritional intake, and plasma lipids were evaluated during a 28 day study period.</p> <p>Results</p> <p>Both diets were associated with significant weight loss after 28 days, -5.26 ± 0.84 kg and -5.74 ± 0.63 kg for RM and PFS groups, respectively. The PFS diet was associated with a significantly higher intake of PUFA and cholesterol. Despite high cholesterol and fat intakes, neither diet was associated with significant changes in plasma cholesterol or the plasma lipoprotein cholesterol profile. While plasma triglycerides were reduced in both groups, the effect was only statistically significant for the PFS diet.</p

    Reexpression of hSNF5 in Malignant Rhabdoid Tumor Cell Lines Causes Cell Cycle Arrest through a p21CIP1/WAF1-Dependent Mechanism

    Get PDF
    Loss of hSNF5 function is usually observed in malignant rhabdoid tumor (MRT), a highly aggressive pediatric neoplasm. Previous studies have shown that reexpression of hSNF5 in MRT cell lines causes G1 cell cycle arrest with p16INK4A, p21CIP1/WAF1 and cyclin D1 playing key roles in MRT cell growth control. However, we have shown that reexpression of hSNF5 induced cell cycle arrest in the absence of p16INK4A expression. These results indicate that the mechanism of hSNF5-induced cell cycle arrest is context dependent. Here, we investigated the relationship between p21CIP1/WAF1 and hSNF5 in the regulation of growth using several MRT cell lines. We found that G1 cell cycle arrest occurred concomitant with an increase in p21CIP1/WAF1 mRNA and protein levels and preceeded p16INK4A mRNA and protein up-regulation. Chromatin immunoprecipitation data confirmed that hSNF5 appeared at both p21CIP1/WAF1 and p16INK4A promoters after reexpression. We further showed that p21CIP1/WAF1 induction showed both p53 dependent and independent mechanisms. We also demonstrated that reduction of p21CIP1/WAF1 expression by RNAi significantly inhibited hSNF5-induced G1 arrest. Our results demonstrate that both p21CIP1/WAF1 and p16INK4A are targets for hSNF5, and that p21CIP1/WAF1 up-regulation during hSNF5-induced G1 arrest precedes p16INK4A up-regulation. These findings indicate that SNF5 mediates a temporally controlled program of CDK inhibition to restrict aberrant proliferation in MRT cells

    Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human hemangiosarcoma (HSA) tends to have a poor prognosis; its tumorigenesis has not been elucidated, as there is a dearth of HSA clinical specimens and no experimental model for HSA. However, the incidence of spontaneous HSA is relatively high in canines; therefore, canine HSA has been useful in the study of human HSA. Recently, the production of angiogenic growth factors and their receptors in human and canine HSA has been reported. Moreover, the growth-factor environment of HSA is very similar to that of pathophysiological angiogenesis, which some homeobox genes regulate in the transcription of angiogenic molecules. In the present study, we established 6 xenograft canine HSA tumors and detected the expression of growth factors, their receptors, and angiogenic homeobox genes.</p> <p>Methods</p> <p>Six primary canine HSAs were xenografted to nude mice subcutaneously and serially transplanted. Subsequently, the expressions of vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factors (bFGF), flt-1 and flk-1 (receptors of VEGF-A), FGFR-1, and angiogenic homeobox genes HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 were investigated in original and xenograft tumors by histopathology, immunostaining, and reverse transcription polymerase chain reaction (RT-PCR), using canine-specific primer sets.</p> <p>Results</p> <p>Histopathologically, xenograft tumors comprised a proliferation of neoplastic cells that were varied in shape, from spindle-shaped and polygonal to ovoid; some vascular-like structures and vascular clefts of channels were observed, similar to those in the original tumors. The expression of endothelial markers (CD31 and vWF) was detected in xenograft tumors by immunohistochemistry and RT-PCR. Moreover, the expression of VEGF-A, bFGF, flt-1, flk-1, FGFR-1, HoxA9, HoxB3, HoxB7, HoxD3, Pbx1, and Meis1 was detected in xenograft tumors. Interestingly, expressions of bFGF tended to be higher in 3 of the xenograft HSA tumors than in the other tumors.</p> <p>Conclusion</p> <p>We established 6 xenograft canine HSA tumors in nude mice and found that the expressions of angiogenic growth factors and their receptors in xenograft HSAs were similar to those in spontaneous HSA. Furthermore, we detected the expression of angiogenic homeobox genes; therefore, xenograft models may be useful in analyzing malignant growth in HSA.</p

    Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons

    Get PDF
    Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. βII spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber

    A FLORISTIC INVENTORY OF PHILLIPS AND VALLEY COUNTIES, MONTANA (U.S.A.)

    No full text
    Volume: 7Start Page: 847End Page: 87
    corecore