696 research outputs found

    The Fermi blazars' divide based on the diagnostic of the SEDs peak frequencies

    Full text link
    We have studied the quasi-simultaneous Spectral Energy Distributions (SED) of 48 LBAS blazars, detected within the three months of the LAT Bright AGN Sample (LBAS) data taking period, combining Fermi and Swift data with radio NIR-Optical and hard-X/gamma-ray data. Using these quasi-simultaneous SEDs, sampling both the low and the high energy peak of the blazars broad band emission, we were able to apply a diagnostic tool based on the estimate of the peak frequencies of the synchrotron (S) and Inverse Compton (IC) components. Our analysis shows a Fermi blazars' divide based on the peak frequencies of the SED. The robust result is that the Synchrotron Self Compton (SSC) region divides in two the plane were we plot the peak frequency of the synchrotron SED vs the typical Lorentz factor of the electrons most contributing to the synchrotron emission and to the inverse Compton process. Objects within or below this region, radiating likely via the SSC process, are high-frequency-peaked BL Lac object (HBL), or low/intermediate-frequency peaked BL Lac object (LBL/IBL). All of the IBLs/LBLs within or below the SSC region are not Compton dominated. The objects lying above the SSC region, radiating likely via the External radiation Compton (ERC) process, are Flat Spectrum Radio Quasars and IBLs/LBLs. All of the IBLs/LBLs in the ERC region show a significant Compton dominance.Comment: Contribution to the Workshop SciNeGHe 2009/Gamma-ray Physics in the LHC era (Assisi - Italy, Oct. 7-9 2009

    Study of microwave/gamma-ray properties for Fermi-LAT bright AGNs

    Full text link
    Blazars are a small fraction of all extragalactic sources but, unlike other objects, they are strong emitters across the entire electromagnetic spectrum. Recent data in the microwave region of the electromagnetic spectrum have become available to allow for systematic studies of blazars over large cosmological volumes. This frequency band is indeed particularly suited for the selection of blazars since at these frequencies the contamination from radio extended components with steep spectra is no longer present and the emission from the accretion process is negligible. During the first 3 months of scientific operations Fermi-LAT detected 106 bright, high-galactic latitude (| b |> 10 deg) AGNs with high significance. In this study we investigate the possible relations between the microwave and the gamma-ray emissions for Fermi-LAT detected AGNs belonging to WMAP 5th year bright source catalog.Comment: 3 pages, 3 ps figures, "2009 Fermi Symposium", "eConf Proceedings C091122

    Blazar surveys with WMAP and Swift

    Full text link
    We present the preliminary results from two new surveys of blazars that have direct implications on the GLAST detection of extragalactic sources from two different perspectives: microwave selection and a combined deep X-ray/radio selection. The first one is a 41 GHz flux-limited sample extracted from the WMAP 3-yr catalog of microwave point sources. This is a statistically well defined sample of about 200 blazars and radio galaxies, most of which are expected to be detected by GLAST. The second one is a new deep survey of Blazars selected among the radio sources that are spatially coincident with serendipitous sources detected in deep X-ray images (0.3-10 keV) centered on the Gamma Ray Bursts (GRB) discovered by the Swift satellite. This sample is particularly interesting from a statistical viewpoint since a) it is unbiased as GRBs explode at random positions in the sky, b) it is very deep in the X-ray band (\fx \simgt 10−1510^{-15} \ergs) with a position accuracy of a few arc-seconds, c) it will cover a fairly large (20-30 square deg.) area of sky, d) it includes all blazars with radio flux (1.4 GHz) larger than 10 mJy, making it approximately two orders of magnitude deeper than the WMAP sample and about one order of magnitude deeper than the deepest existing complete samples of radio selected blazars, and e) it can be used to estimate the amount of unresolved GLAST high latitude gamma-ray background and its anisotropy spectrum.Comment: 3 pages, 3 figures, to appear in Proc. of the 1st GLAST Symposium, Feb 5-8, 2007, Stanford, AIP, Eds. S. Ritz, P. F. Michelson, and C. Meega

    Gamma-ray Spectral Evolution of NGC1275 Observed with Fermi-LAT

    Full text link
    We report on a detailed investigation of the high-energy gamma-ray emission from NGC\,1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the gamma-ray emitting region is now measured to be separated by only 0.46' from the nucleus of NGC1275, well within the 95% confidence error circle with radius ~1.5'. Early Fermi-LAT observations revealed a significant decade-timescale brightening of NGC1275 at GeV photon energies, with a flux about seven times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one-year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average >100 MeV gamma-ray spectrum of NGC1275 shows a possible deviation from a simple power-law shape, indicating a spectral cut-off around an observed photon energy of E = 42.2+-19.6 GeV, with an average flux of F = (2.31+-0.13) X 10^{-7} ph/cm^2/s and a power-law photon index, Gamma = 2.13+-0.02. The largest gamma-ray flaring event was observed in April--May 2009 and was accompanied by significant spectral variability above E > 1-2 GeV. The gamma-ray activity of NGC1275 during this flare can be described by a hysteresis behavior in the flux versus photon index plane. The highest energy photon associated with the gamma-ray source was detected at the very end of the observation, with the observed energy of E = 67.4GeV and an angular separation of about 2.4' from the nucleus. In this paper we present the details of the Fermi-LAT data analysis, and briefly discuss the implications of the observed gamma-ray spectral evolution of NGC1275 in the context of gamma-ray blazar sources in general.Comment: 20 pages, 6 figures, accepted for publication in the Ap

    Systematic search for gamma-ray periodicity in active galactic nuclei detected by the Fermi Large Area Telescope

    Get PDF
    We use nine years of gamma-ray data provided by the Fermi Large Area Telescope (LAT) to systematically study the light curves of more than two thousand active galactic nuclei (AGN) included in recent Fermi-LAT catalogs. Ten different techniques are used, which are organized in an automatic periodicity-search pipeline, in order to search for evidence of periodic emission in gamma rays. Understanding the processes behind this puzzling phenomenon will provide a better view about the astrophysical nature of these extragalactic sources. However, the observation of temporal patterns in gamma-ray light curves of AGN is still challenging. Despite the fact that there have been efforts on characterizing the temporal emission of some individual sources, a systematic search for periodicities by means of a full likelihood analysis applied to large samples of sources was missing. Our analysis finds 11 AGN, of which 9 are identified for the first time, showing periodicity at more than 4sigma in at least four algorithms. These findings will help in solving questions related to the astrophysical origin of this periodic behavior.Comment: 16 pages, 5 figures, 4 tables. Accepted by Ap

    An integrated approach for the analysis and modeling of road tunnel ventilation. Part II: Numerical model and its calibration

    Get PDF
    The present work represents the second and final part of a twofold study aiming at the definition and validation of an integrated methodology for the analysis and modeling of road tunnel ventilation systems. A numerical approach is presented, based on the Finite Volume integration of the 1D mechanical and thermal energy conservation equations on a network of ducts, representing the ventilation system of the 11.6 km long Mont Blanc Tunnel. The set of distributed and concentrated loss coefficients, representing dissipation of mechanical energy by friction in each part of the ventilation system, is calibrated against a rich experimental dataset, collected throughout a dedicated set of in situ tests and presented in the first part of the work. The calibration of the model is carried out by means of genetic optimization algorithms. Predictions of the flow field using the calibrated parameters are in remarkable agreement with the experimental data, with an overall RMS error of \ub1 0.27 m/s, i.e. of the same order of the accuracy of the measurement probes. Further validation against a selection of field data recorded by the tunnel monitoring and control system is brought forward, highlighting the robustness and potential general applicability of the proposed approach

    ROXA: a new multi-frequency selected large sample of blazars with SDSS and 2dF optical spectroscopy

    Full text link
    Context. Although Blazars are a small fraction of the overall AGN population they are expected to be the dominant population of extragalactic sources in the hard X-ray and gamma-ray bands and have been shown to be the largest contaminant of CMB fluctuation maps. So far the number of known blazars is of the order of several hundreds, but the forthcoming AGILE, GLAST and Planck space observatories will detect several thousand of objects of this type. Aims. In preparation for these missions it is necessary to identify new samples of blazars to study their multi-frequency characteristics and statistical properties. Methods. We compiled a sample of objects with blazar-like properties via a cross-correlation between large radio (NVSS, ATCAPMN) and X- ray surveys (RASS) using the SDSS-DR4 and 2dF survey data to spectroscopically identify our candidates and test the validity of the selection method. Results. We present the Radio - Optical - X-ray catalog built at ASDC (ROXA), a list of 816 objects among which 510 are confirmed blazars. Only 19% of the candidates turned out to be certainly non-blazars demonstrating the high efficiency of our selection method. Conclusions. Our catalog includes 173 new blazar identifications, or about 10% of all presently known blazars. The relatively high flux threshold in the X-ray energy band (given by the RASS survey) preferentially selects objects with high fx / fr ratio leading to the discovery of new High Energy Peaked BL Lac (HBLs). Our catalog therefore includes many new potential targets for GeV-TeV observations.Comment: 19 pages, 3 figure, 2 table
    • …
    corecore