380 research outputs found
A lattice polymer study of DNA renaturation dynamics
DNA renaturation is the recombination of two complementary single strands to
form a double helix. It is experimentally known that renaturation proceeds
through the formation of a double stranded nucleus of several base pairs (the
rate limiting step) followed by a much faster zippering. We consider a lattice
polymer model undergoing Rouse dynamics and focus on the nucleation of two
diffusing strands. We study numerically the dependence of various nucleation
rates on the strand lengths and on an additional local nucleation barrier. When
the local barrier is sufficiently high, all renaturation rates considered scale
with the length as predicted by Kramers' rate theory and are also in agreement
with experiments: their scaling behavior is governed by exponents describing
equilibrium properties of polymers. When the local barrier is lowered
renaturation occurs in a regime of genuine non-equilibrium behavior and the
scaling deviates from the rate theory prediction.Comment: 13 pages, 6 figures. To appear in Journal of Statistical Mechanic
Coexistence of excited states in confined Ising systems
Using the density-matrix renormalization-group method we study the
two-dimensional Ising model in strip geometry. This renormalization scheme
enables us to consider the system up to the size 300 x infinity and study the
influence of the bulk magnetic field on the system at full range of
temperature. We have found out the crossover in the behavior of the correlation
length on the line of coexistence of the excited states. A detailed study of
scaling of this line is performed. Our numerical results support and specify
previous conclusions by Abraham, Parry, and Upton based on the related bubble
model.Comment: 4 Pages RevTeX and 4 PostScript figures included; the paper has been
rewritten without including new result
Equilibrium shapes and faceting for ionic crystals of body-centered-cubic type
A mean field theory is developed for the calculation of the surface free
energy of the staggered BCSOS, (or six vertex) model as function of the surface
orientation and of temperature. The model approximately describes surfaces of
crystals with nearest neighbor attractions and next nearest neighbor
repulsions. The mean field free energy is calculated by expressing the model in
terms of interacting directed walks on a lattice. The resulting equilibrium
shape is very rich with facet boundaries and boundaries between reconstructed
and unreconstructed regions which can be either sharp (first order) or smooth
(continuous). In addition there are tricritical points where a smooth boundary
changes into a sharp one and triple points where three sharp boundaries meet.
Finally our numerical results strongly suggest the existence of conical points,
at which tangent planes of a finite range of orientations all intersect each
other. The thermal evolution of the equilibrium shape in this model shows
strong similarity to that seen experimentally for ionic crystals.Comment: 14 Pages, Revtex and 10 PostScript figures include
Breakdown of thermodynamic equilibrium for DNA hybridization in microarrays
Test experiments of hybridization in DNA microarrays show systematic
deviations from the equilibrium isotherms. We argue that these deviations are
due to the presence of a partially hybridized long-lived state, which we
include in a kinetic model. Experiments confirm the model predictions for the
intensity vs. free energy behavior. The existence of slow relaxation phenomena
has important consequences for the specificity of microarrays as devices for
the detection of a target sequence from a complex mixture of nucleic acids.Comment: 4 pages, 4 figure
Thermodynamic behavior of short oligonucleotides in microarray hybridizations can be described using Gibbs free energy in a nearest-neighbor model
While designing oligonucleotide-based microarrays, cross-hybridization
between surface-bound oligos and non-intended labeled targets is probably the
most difficult parameter to predict. Although literature describes
rules-of-thumb concerning oligo length, overall similarity, and continuous
stretches, the final behavior is difficult to predict. The aim of this study
was to investigate the effect of well-defined mismatches on hybridization
specificity using CodeLink Activated Slides, and to study quantitatively the
relation between hybridization intensity and Gibbs free energy (Delta G),
taking the mismatches into account. Our data clearly showed a correlation
between the hybridization intensity and Delta G of the oligos over three orders
of magnitude for the hybridization intensity, which could be described by the
Langmuir model. As Delta G was calculated according to the nearest-neighbor
model, using values related to DNA hybridizations in solution, this study
clearly shows that target-probe hybridizations on microarrays with a
three-dimensional coating are in quantitative agreement with the corresponding
reaction in solution. These results can be interesting for some practical
applications. The correlation between intensity and Delta G can be used in
quality control of microarray hybridizations by designing probes and
corresponding RNA spikes with a range of Delta G values. Furthermore, this
correlation might be of use to fine-tune oligonucleotide design algorithms in a
way to improve the prediction of the influence of mismatching targets on
microarray hybridizations.Comment: 32 pages on a single pdf fil
Physics-based analysis of Affymetrix microarray data
We analyze publicly available data on Affymetrix microarrays spike-in
experiments on the human HGU133 chipset in which sequences are added in
solution at known concentrations. The spike-in set contains sequences of
bacterial, human and artificial origin. Our analysis is based on a recently
introduced molecular-based model [E. Carlon and T. Heim, Physica A 362, 433
(2006)] which takes into account both probe-target hybridization and
target-target partial hybridization in solution. The hybridization free
energies are obtained from the nearest-neighbor model with experimentally
determined parameters. The molecular-based model suggests a rescaling that
should result in a "collapse" of the data at different concentrations into a
single universal curve. We indeed find such a collapse, with the same
parameters as obtained before for the older HGU95 chip set. The quality of the
collapse varies according to the probe set considered. Artificial sequences,
chosen by Affymetrix to be as different as possible from any other human genome
sequence, generally show a much better collapse and thus a better agreement
with the model than all other sequences. This suggests that the observed
deviations from the predicted collapse are related to the choice of probes or
have a biological origin, rather than being a problem with the proposed model.Comment: 11 pages, 10 figure
- …