While designing oligonucleotide-based microarrays, cross-hybridization
between surface-bound oligos and non-intended labeled targets is probably the
most difficult parameter to predict. Although literature describes
rules-of-thumb concerning oligo length, overall similarity, and continuous
stretches, the final behavior is difficult to predict. The aim of this study
was to investigate the effect of well-defined mismatches on hybridization
specificity using CodeLink Activated Slides, and to study quantitatively the
relation between hybridization intensity and Gibbs free energy (Delta G),
taking the mismatches into account. Our data clearly showed a correlation
between the hybridization intensity and Delta G of the oligos over three orders
of magnitude for the hybridization intensity, which could be described by the
Langmuir model. As Delta G was calculated according to the nearest-neighbor
model, using values related to DNA hybridizations in solution, this study
clearly shows that target-probe hybridizations on microarrays with a
three-dimensional coating are in quantitative agreement with the corresponding
reaction in solution. These results can be interesting for some practical
applications. The correlation between intensity and Delta G can be used in
quality control of microarray hybridizations by designing probes and
corresponding RNA spikes with a range of Delta G values. Furthermore, this
correlation might be of use to fine-tune oligonucleotide design algorithms in a
way to improve the prediction of the influence of mismatching targets on
microarray hybridizations.Comment: 32 pages on a single pdf fil