65 research outputs found
Arrested phase separation in reproducing bacteria: a generic route to pattern formation?
We present a generic mechanism by which reproducing microorganisms, with a
diffusivity that depends on the local population density, can form stable
patterns. It is known that a decrease of swimming speed with density can
promote separation into bulk phases of two coexisting densities; this is
opposed by the logistic law for birth and death which allows only a single
uniform density to be stable. The result of this contest is an arrested
nonequilibrium phase separation in which dense droplets or rings become
separated by less dense regions, with a characteristic steady-state length
scale. Cell division mainly occurs in the dilute regions and cell death in the
dense ones, with a continuous flux between these sustained by the diffusivity
gradient. We formulate a mathematical model of this in a case involving
run-and-tumble bacteria, and make connections with a wider class of mechanisms
for density-dependent motility. No chemotaxis is assumed in the model, yet it
predicts the formation of patterns strikingly similar to those believed to
result from chemotactic behavior
Aggregation Patterns in Stressed Bacteria
We study the formation of spot patterns seen in a variety of bacterial
species when the bacteria are subjected to oxidative stress due to hazardous
byproducts of respiration. Our approach consists of coupling the cell density
field to a chemoattractant concentration as well as to nutrient and waste
fields. The latter serves as a triggering field for emission of
chemoattractant. Important elements in the proposed model include the
propagation of a front of motile bacteria radially outward form an initial
site, a Turing instability of the uniformly dense state and a reduction of
motility for cells sufficiently far behind the front. The wide variety of
patterns seen in the experiments is explained as being due the variation of the
details of the initiation of the chemoattractant emission as well as the
transition to a non-motile phase.Comment: 4 pages, REVTeX with 4 postscript figures (uuencoded) Figures 1a and
1b are available from the authors; paper submitted to PRL
Population Dynamics and Non-Hermitian Localization
We review localization with non-Hermitian time evolution as applied to simple
models of population biology with spatially varying growth profiles and
convection. Convection leads to a constant imaginary vector potential in the
Schroedinger-like operator which appears in linearized growth models. We
illustrate the basic ideas by reviewing how convection affects the evolution of
a population influenced by a simple square well growth profile. Results from
discrete lattice growth models in both one and two dimensions are presented. A
set of similarity transformations which lead to exact results for the spectrum
and winding numbers of eigenfunctions for random growth rates in one dimension
is described in detail. We discuss the influence of boundary conditions, and
argue that periodic boundary conditions lead to results which are in fact
typical of a broad class of growth problems with convection.Comment: 19 pages, 11 figure
Lubricating Bacteria Model for Branching growth of Bacterial Colonies
Various bacterial strains (e.g. strains belonging to the genera Bacillus,
Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns
during growth on poor semi-solid substrates. These patterns reflect the
bacterial cooperative self-organization. Central part of the cooperation is the
collective formation of lubricant on top of the agar which enables the bacteria
to swim. Hence it provides the colony means to advance towards the food. One
method of modeling the colonial development is via coupled reaction-diffusion
equations which describe the time evolution of the bacterial density and the
concentrations of the relevant chemical fields. This idea has been pursued by a
number of groups. Here we present an additional model which specifically
includes an evolution equation for the lubricant excreted by the bacteria. We
show that when the diffusion of the fluid is governed by nonlinear diffusion
coefficient branching patterns evolves. We study the effect of the rates of
emission and decomposition of the lubricant fluid on the observed patterns. The
results are compared with experimental observations. We also include fields of
chemotactic agents and food chemotaxis and conclude that these features are
needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.
Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model
The colonization of unoccupied territory by invading species, known as range expansion, is a spatially heterogeneous non-equilibrium growth process. We introduce a two-species Eden growth model to analyze the interplay between uni-directional (irreversible) mutations and selection at the expanding front. While the evolutionary dynamics leads to coalescence of both wild-type and mutant clusters, the non-homogeneous advance of the colony results in a rough front. We show that roughening and domain dynamics are strongly coupled, resulting in qualitatively altered bulk and front properties. For beneficial mutations the front is quickly taken over by mutants and growth proceeds Eden-like. In contrast, if mutants grow slower than wild-types, there is an antagonism between selection pressure against mutants and growth by the merging of mutant domains with an ensuing absorbing state phase transition to an all-mutant front. We find that surface roughening has a marked effect on the critical properties of the absorbing state phase transition. While reference models, which keep the expanding front flat, exhibit directed percolation critical behavior, the exponents of the two-species Eden model strongly deviate from it. In turn, the mutation-selection process induces an increased surface roughness with exponents distinct from that of the classical Eden model
An equation-free computational approach for extracting population-level behavior from individual-based models of biological dispersal
The movement of many organisms can be described as a random walk at either or
both the individual and population level. The rules for this random walk are
based on complex biological processes and it may be difficult to develop a
tractable, quantitatively-accurate, individual-level model. However, important
problems in areas ranging from ecology to medicine involve large collections of
individuals, and a further intellectual challenge is to model population-level
behavior based on a detailed individual-level model. Because of the large
number of interacting individuals and because the individual-level model is
complex, classical direct Monte Carlo simulations can be very slow, and often
of little practical use. In this case, an equation-free approach may provide
effective methods for the analysis and simulation of individual-based models.
In this paper we analyze equation-free coarse projective integration. For
analytical purposes, we start with known partial differential equations
describing biological random walks and we study the projective integration of
these equations. In particular, we illustrate how to accelerate explicit
numerical methods for solving these equations. Then we present illustrative
kinetic Monte Carlo simulations of these random walks and show a decrease in
computational time by as much as a factor of a thousand can be obtained by
exploiting the ideas developed by analysis of the closed form PDEs. The
illustrative biological example here is chemotaxis, but it could be any random
walker which biases its movement in response to environmental cues.Comment: 30 pages, submitted to Physica
Exponential Distribution of Locomotion Activity in Cell Cultures
In vitro velocities of several cell types have been measured using computer
controlled video microscopy, which allowed to record the cells' trajectories
over several days. On the basis of our large data sets we show that the
locomotion activity displays a universal exponential distribution. Thus, motion
resulting from complex cellular processes can be well described by an
unexpected, but very simple distribution function. A simple phenomenological
model based on the interaction of various cellular processes and finite ATP
production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure
The Two Fluid Drop Snap-off Problem: Experiments and Theory
We address the dynamics of a drop with viscosity breaking up
inside another fluid of viscosity . For , a scaling theory
predicts the time evolution of the drop shape near the point of snap-off which
is in excellent agreement with experiment and previous simulations of Lister
and Stone. We also investigate the dependence of the shape and
breaking rate.Comment: 4 pages, 3 figure
Competing Patterns of Signaling Activity in Dictyostelium discoideum
Quantitative experiments are described on spatio-temporal patterns of
coherent chemical signaling activity in populations of {\it Dictyostelium
discoideum} amoebae. We observe competition between spontaneously firing
centers and rotating spiral waves that depends strongly on the overall cell
density. At low densities, no complete spirals appear and chemotactic
aggregation is driven by periodic concentric waves, whereas at high densities
the firing centers seen at early times nucleate and are apparently entrained by
spiral waves whose cores ultimately serve as aggregation centers. Possible
mechanisms for these observations are discussed.Comment: 10 pages, RevTeX, 4 ps figures, accepted in PR
Streaming instability of slime mold amoebae: An analytical model
During the aggregation of amoebae of the cellular slime mould Dictyostelium, the interaction of chemical waves of the signaling molecule cAMP with cAMP-directed cell movement causes the breakup of a uniform cell layer into branching patterns of cell streams. Recent numerical and experimental investigations emphasize the pivotal role of the cell-density dependence of the chemical wave speed for the occurrence of the streaming instability. A simple, analytically tractable, model of Dictyostelium aggregation is developed to test this idea. The interaction of cAMP waves with cAMP-directed cell movement is studied in the form of coupled dynamics of wave front geometries and cell density. Comparing the resulting explicit instability criterion and dispersion relation for cell streaming with the previous findings of model simulations and numerical stability analyses, a unifying interpretation of the streaming instability as a cAMP wave-driven chemotactic instability is proposed
- …