30 research outputs found
Amphibious auditory responses of the American alligator (Alligator mississipiensis)
Animals that thrive both on land and underwater are faced with the task of interpreting stimuli in different media. This becomes a challenge to the sensory receptors in that stimuli (e.g., sound, motion) may convey the same type of information but are transmitted with different physical characteristics. We used auditory brainstem responses to examine hearing abilities of a species that makes full use of these two environments, the American alligator (Alligator mississipiensis). In water, alligators responded to tones from 100 Hz to 2,000 Hz, with peak sensitivity at 800 Hz. In air, they responded to tones from 100 Hz to 8,000 Hz, with peak sensitivity around 1,000 Hz. We also examined the contribution to hearing of an air bubble that becomes trapped in the middle ear as the animal submerges. This bubble has been previously implicated in underwater hearing. Our studies show that the trapped air bubble has no affect on auditory thresholds, suggesting the bubble is not an important adaptation for underwater hearing in this species
Erratum: Amphibious auditory responses of the American alligator (Alligator mississipiensis)
Animals that thrive both on land and underwater are faced with the task of interpreting stimuli in different media. This becomes a challenge to the sensory receptors in that stimuli (e.g., sound, motion) may convey the same type of information but are transmitted with different physical characteristics. We used auditory brainstem responses to examine hearing abilities of a species that makes full use of these two environments, the American alligator (Alligator mississipiensis). In water, alligators responded to tones from 100 Hz to 2,000 Hz, with peak sensitivity at 800 Hz. In air, they responded to tones from 100 Hz to 8,000 Hz, with peak sensitivity around 1,000 Hz. We also examined the contribution to hearing of an air bubble that becomes trapped in the middle ear as the animal submerges. This bubble has been previously implicated in underwater hearing. Our studies show that the trapped air bubble has no affect on auditory thresholds, suggesting the bubble is not an important adaptation for underwater hearing in this species
A comparison of auditory brainstem responses across diving bird species
© 2015, Springer-Verlag Berlin Heidelberg. There is little biological data available for diving birds because many live in hard-to-study, remote habitats. Only one species of diving bird, the black-footed penguin (Spheniscusdemersus), has been studied in respect to auditory capabilities (Wever et al., Proc Natl Acad Sci USA 63:676–680, 1969). We, therefore, measured in-air auditory threshold in ten species of diving birds, using the auditory brainstem response (ABR). The average audiogram obtained for each species followed the U-shape typical of birds and many other animals. All species tested shared a common region of the greatest sensitivity, from 1000 to 3000 Hz, although audiograms differed significantly across species. Thresholds of all duck species tested were more similar to each other than to the two non-duck species tested. The red-throated loon (Gavia stellata) and northern gannet (Morus bassanus) exhibited the highest thresholds while the lowest thresholds belonged to the duck species, specifically the lesser scaup (Aythyaaffinis) and ruddy duck (Oxyurajamaicensis). Vocalization parameters were also measured for each species, and showed that with the exception of the common eider (Somateriamollisima), the peak frequency, i.e., frequency at the greatest intensity, of all species’ vocalizations measured here fell between 1000 and 3000 Hz, matching the bandwidth of the most sensitive hearing range
An analysis of the factors affecting the development of the 1962 hospital plan for England and Wales
The auditory brainstem response in two lizard species
Although lizards have highly sensitive ears, it is difficult to condition them to sound, making standard psychophysical assays of hearing sensitivity impractical. This paper describes non-invasive measurements of the auditory brainstem response (ABR) in both Tokay geckos (Gekko gecko; nocturnal animals, known for their loud vocalizations) and the green anole (Anolis carolinensis, diurnal, non-vocal animals). Hearing sensitivity was measured in 5 geckos and 7 anoles. The lizards were sedated with isoflurane, and ABRs were measured at levels of 1 and 3% isoflurane. The typical ABR waveform in response to click stimulation showed one prominent and several smaller peaks occurring within 10 ms of the stimulus onset. ABRs to brief tone bursts revealed that geckos and anoles were most sensitive between 1.6–2 kHz and had similar hearing sensitivity up to about 5 kHz (thresholds typically 20–50 dB SPL). Above 5 kHz, however, anoles were more than 20 dB more sensitive than geckos and showed a wider range of sensitivity (1–7 kHz). Generally, thresholds from ABR audiograms were comparable to those of small birds. Best hearing sensitivity, however, extended over a larger frequency range in lizards than in most bird species