422 research outputs found

    Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations.

    Get PDF
    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its registry with respect to the atoms of the crystal probed, images with completely different qualitative features are obtained. If the effective tip is a single atom the vacancy is clearly imaged. However, if the tip consists of several atoms and is in registry with the sample, a virtual atom appears instead of the vacancy and the crystal lattice is perfectly reproduced. If the tip is out of registry with respect to the sample, artifacts having the size of the effective tip are reported.

    Stick and Slip Behaviour of Confined Oligomer Melts under Shear. A Molecular-Dynamics Study.

    Get PDF
    The flow behaviour of melts of short chains, confined in molecularly thin Couette flow geometries, is studied with molecular-dynamics simulations. The effect of wall attraction and confinement on the density and velocity profiles is analysed. In these highly inhomogeneous films, a strong correlation between the density and velocity profile is found. Sticking of the interfacial layer on the wall and slip on the wall and inside the film is manifested by changes in the velocity profile. The location of the slip is determined by the strength of the wall attraction.

    Inhomogeneities in sheared ultrathin lubricating films

    Get PDF
    Nonequilibrium molecular dynamics computer simulations have been used to study nanoscopically confined oligomer films under shear. Beyond the well-known density layering across such films, other structural and dynamical inhomogeneities exist across such films and are discussed here. When these films are subjected to strong shear flows, slip appears at the confining surfaces or inside the pore, depending on the wall interactions. For strong wall affinities interlayer slip develops between the adsorbed layer and the free chains, resulting in a structural discontinuity; a molecular mechanism, involving shear induced conformational changes of the adsorbed chains, is associated with this interlayer slip. Moreover, the resistance to flow (quantified through an effective viscosity) changes considerably across the film, with a dramatic viscosity increase of the adsorbed layer near attractive surfaces. Shear thinning is mainly taking place inside this more viscous interfacial layer, whereas the dynamics in the middle of the film remain bulklike; thus, there also exists strong inhomogeneity in the dynamics of the system. A comparison with SFA experimental and theoretical studies is also made

    Effect of shear on the desorption of oligomers in nanoscopically confined films

    Get PDF
    Bitsanis et al. J. Chem. Phys. 99, 5520 (1993) found that in nanoscopically confined films between strongly physisorbing surfaces chains with many contacts with the walls are irreversibly adsorbed. When shear is imposed to these systems molecular dynamics (MD) simulations show that the majority of the adsorbed oligomers adopts flat conformations on top of the walls. Although these conformations are characterized by high molecular adsorption energies, the same MD simulations show that desorption is strongly promoted by shear. The underlying mechanism is discussed

    Association behavior of binary polymer mixtures under elongational flow

    Get PDF
    The influence of elongational flow on the association behavior of binary mixtures of functionalized polymers capable of forming single reversible orientationally dependent bonds, such as hydrogen bonds, is studied analytically. Applying a mean-field approach with an external potential representing the effect of the elongational flow, the orientation distribution functions for the dumbbell model and the freely jointed model of a polymer chain were obtained. Two opposite factors determine the association of “linear” diblock copolymerlike chains: the unfavorable extra stretching under flow of associated polymer chains and the favorable orientation of the chains (segments) along the flow direction. The former dominates and the fraction of associated “linear” chains decreases with increasing flow rate. For mixtures of polymers which are capable of forming associated T-chains, the association also decreases, however, more slowly, and this time due to unfavorable orientational effects. If the formation of associated linear and T-polymers as well as complex linear/T-polymers is possible, a strong preference for the formation of associated T-chains is found. At high flow rates any type of association becomes unfavorable

    Nanorheology of strongly confined oligomeric lubricants

    Get PDF
    Lubricant films confined in nanometric slit pores and subjected to shear flow are studied by non-equilib-rium molecular dynamics in a planar Couette flow geometry. An inhomogeneous, layered ensity profile is developed near the confining surfaces and the shape of the velocity profile across the pore depends on the wall energetics. A nonlinear velocity profile is developed and both slippage located at the wall and inside the film (interlayer slip) are observed. The local slope of the velocity profile and the location of the slippage plane are determined by the adsorption energy of the wall. Shear-induced changes of the adsorbed chain conformations are discussed in relation with the molecular mechanism of slippage and the magnitude of the interlayer slip. INTRODUCTION AND METHOD Lubrication, friction and adhesion are of great importance to many technological pplications. Due to the increasing miniaturization of high-technological devices, the dimensional tolerances approach the nanometer scale and necessitate an understanding at the microscopic (molecu-lar/atomic) scale; thus, the molecular aspects of friction and lubrication become central in majo

    Prediction of response to biological treatment with monoclonal antibodies in severe asthma

    Get PDF
    In recent years, major developments have occurred in severe asthma management. Different asthma phenotypes and subgroups have been identified and new treatment options have become available. A total of five monoclonal antibodies are currently approved in severe asthma treatment: omalizumab, mepolizumab, reslizumab, benralizumab and dupilumab. These drugs have been shown to reduce exacerbations and to have an oral corticosteroid-sparing effect in many severe asthma patients. However, biological treatment is not successful in all patients and should be discontinued in non-responsive patients. Treating the right patient with the right biologic, and therefore biologic response prediction, has become a major point of interest in severe asthma management. A variety of response outcomes is utilized in the different clinical trials, as well as a huge range of potential predicting factors. Also, regarding the timing of the response evaluation, there are considerable differences between studies. This review summarizes the results from studies on predicting responses and responders to biological treatment in severe asthma, taking into account clinical, functional and inflammatory parameters assessed prior to the start of treatment as well as following a few months of therapy. In addition, future perspectives are discussed, highlighting the need for more research to improve patient identification and treatment responses in the field of biological treatment in severe asthma

    A Molecular-Dynamics Study

    Get PDF
    Abstract. -The flow behaviour of melts of short chains, confined in molecularly thin Couette flow geometries, is studied with molecular-dynamics simulations. The effect of wall attraction and confinement on the density and velocity profiles is analysed. In these highly inhomogeneous films, a strong correlation between the density and velocity profile is found. Sticking of the interfacial layer on the wall and slip on the wall and inside the film is manifested by changes in the velocity profile. The location of the slip is determined by the strength of the wall attraction. Even though the macroscopic phenomena of friction, lubrication and adhesion have been studied for a long time now, their molecular mechanisms have yet to be unveiled. Recent novel experimental techniques such as the surface forces apparatus together with the scanning probe microscopies are capable to give a vast amount of information on the nanometer level; these combined with computer simulations will provide further insight into the nanoscopic dynamics of friction, lubrication and adhesion. The structural and dynamical properties of ultrathin confined films between atomically flat surfaces undergoing shear are studied here with molecular-dynamics simulations. Simulations are performed on a fluid of short chains in a planar Couette flow geometry realized by confining the polymer system in the x-direction between two parallel planar f.c.c. (111) planes. Periodic boundary conditions are imposed in the other two directions. The Couette flow is introduced by moving the two walls with equal and constant velocities towards opposite directions keeping the wall-to-wall distance constant. In this way, a steady shear rate is introduced with the direction of flow parallel to the x-axis and the velocity gradient parallel to the x-axis, i.e. normal to the walls El]. The chains consist of six segments which are connected in a linear freely joined topology. Of course, the model is not expected to capture the real monomer response and segments correspond to several chemical monomers [2]. The segments of the same chain as well as segments belonging to different chains interact via a pairwise purely repulsive, shifted an

    Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-block-poly(vinylpyridine) Diblock Copolymers

    Get PDF
    Synchrotron radiation was used to investigate the self-assembly in two comb-shaped supramolecules systems consisting of octyl gallate (OG), i.e., 1-octyl-3,4,5-trihydroxybenzoate, hydrogen bonded to the pyridine groups of polyisoprene-block-poly(vinylpyridine) diblock copolymers. In the case of the 1,2-polyisoprene-block-poly(4-vinylpyridine)(OG)x system, self-assembly was only observed for x ≥0.5, where x denotes the number of OG molecules per pyridine group. For x = 0.5, 0.75, 1.0, and 1.2 the system self-assembled in the form of hexagonally ordered cylinders of P4VP(OG) throughout the entire temperature range of 25-200 °C investigated. For the 1,4-polyisoprene-block-poly(2-vinylpyridine)(OG)x system, on the other hand, a considerably more complex phase behavior was found, including the formation of cubic, hexagonally ordered cylinders and lamellar morphologies. In this case several order-order transitions were observed as a function of temperature, including a lamellar to lamellar transition involving a collapse of the layer thickness. The absence of hydrogen bonding between the octyl gallate molecules and the pyridine groups at elevated temperatures is argued to be a key factor for many of the phenomena observed.
    • …
    corecore