824 research outputs found

    Alien Registration- Billing, Roy E. (Madison, Somerset County)

    Get PDF
    https://digitalmaine.com/alien_docs/6777/thumbnail.jp

    Mixed Quantum/Classical Calculations of Total and Differential Elastic and Rotationally Inelastic Scattering Cross Sections for Light and Heavy Reduced Masses in a Broad Range of Collision Energies

    Get PDF
    The mixed quantum/classical theory (MQCT) for rotationally inelastic scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys.139, 174108 (2013)] is benchmarked against the full quantum calculations for two molecular systems: He + H2 and Na + N2. This allows testing new method in the cases of light and reasonably heavy reduced masses, for small and large rotational quanta, in a broad range of collision energies and rotational excitations. The resultant collision cross sections vary through ten-orders of magnitude range of values. Both inelastic and elastic channels are considered, as well as differential (over scattering angle) cross sections. In many cases results of the mixed quantum/classical method are hard to distinguish from the full quantum results. In less favorable cases (light masses, larger quanta, and small collision energies) some deviations are observed but, even in the worst cases, they are within 25% or so. The method is computationally cheap and particularly accurate at higher energies, heavier masses, and larger densities of states. At these conditions MQCT represents a useful alternative to the standard full-quantum scattering theory

    Measurement of Electron Trapping in the CESR Storage Ring

    Full text link
    The buildup of low-energy electrons has been shown to affect the performance of a wide variety of particle accelerators. Of particular concern is the persistence of the cloud between beam bunch passages, which can impose limitations on the stability of operation at high beam current. We have obtained measurements of long-lived electron clouds trapped in the field of a quadrupole magnet in a positron storage ring, with lifetimes much longer than the revolution period. Based on modeling, we estimate that about 7% of the electrons in the cloud generated by a 20-bunch train of 5.3 GeV positrons with 16-ns spacing and 1.3x10111.3x10^{11} population survive longer than 2.3 ÎĽ\mus in a quadrupole field of gradient 7.4 T/m. We have observed a non-monotonic dependence of the trapping effect on the bunch spacing. The effect of a witness bunch on the measured signal provides direct evidence for the existence of trapped electrons. The witness bunch is also observed to clear the cloud, demonstrating its effectiveness as a mitigation technique.Comment: 6 pages, 9 figures, 28 citation

    Accurate Calculations of Rotationally Inelastic Scattering Cross Sections Using Mixed Quantum/Classical Theory

    Get PDF
    For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework

    Mixed Quantum/Classical Approach for Description of Molecular Collisions in Astrophysical Environments

    Get PDF
    An efficient and accurate mixed quantum/classical theory approach for computational treatment of inelastic scattering is extended to describe collision of an atom with a general asymmetric-top rotor polyatomic molecule. Quantum mechanics, employed to describe transitions between the internal states of the molecule, and classical mechanics, employed for description of scattering of the atom, are used in a self-consistent manner. Such calculations for rotational excitation of HCOOCH3 in collisions with He produce accurate results at scattering energies above 15 cm–1, although resonances near threshold, below 5 cm–1, cannot be reproduced. Importantly, the method remains computationally affordable at high scattering energies (here up to 1000 cm–1), which enables calculations for larger molecules and at higher collision energies than was possible previously with the standard full-quantum approach. Theoretical prediction of inelastic cross sections for a number of complex organic molecules observed in space becomes feasible using this new computational tool
    • …
    corecore