1,679 research outputs found

    Modifying the surface electronic properties of YBa2Cu3O7-delta with cryogenic scanning probe microscopy

    Full text link
    We report the results of a cryogenic study of the modification of YBa2Cu3O7-delta surface electronic properties with the probe of a scanning tunneling microscope (STM). A negative voltage applied to the sample during STM tunneling is found to modify locally the conductance of the native degraded surface layer. When the degraded layer is removed by etching, the effect disappears. An additional surface effect is identified using Scanning Kelvin Probe Microscopy in combination with STM. We observe reversible surface charging for both etched and unetched samples, indicating the presence of a defect layer even on a surface never exposed to air.Comment: 6 pages, 4 figures. To appear in Superconductor Science and Technolog

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    Centrifugal separation and equilibration dynamics in an electron-antiproton plasma

    Full text link
    Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally-separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally-separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments

    Acute Disseminated Encephalomyelitis with Seizures and Myocarditis: A Fatal Triad.

    Get PDF
    Autoimmune pathology of acute disseminated encephalomyelitis (ADEM) is generally restricted to the brain. Our objective is to expand the phenotype of ADEM. A four-year-old girl was admitted to the pediatric emergency room of a university medical center five days after a common upper respiratory tract infection. Acute symptoms were fever, leg pain, and headaches. She developed meningeal signs, and her level of consciousness dropped rapidly. Epileptic seizure activity started, and she became comatose, requiring intubation and mechanical ventilation. Serial brain magnetic resonance imaging (MRI) illustrated the fulminant development of ADEM. Treatment escalation with high-dose corticosteroids, immunoglobulins, and plasma exchange did not lead to clinical improvement. On day ten, the patient developed treatment-refractory cardiogenic shock and passed away. The postmortem assessment confirmed ADEM and revealed acute lymphocytic myocarditis, likely explaining the acute cardiac failure. Human metapneumovirus and picornavirus were detected in the tracheal secrete by PCR. Data sources-medical chart of the patient. This case is consistent with evidence from experimental findings of an association of ADEM with myocarditis as a postinfectious systemic autoimmune response, with life-threatening involvement of the brain and heart

    Status of the Super-B factory Design

    Full text link
    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036^{36} cm2^{-2} sec1^{-1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Υ\Upsilon(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low βy\beta_y^\star without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications

    Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    Full text link
    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilated. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly-identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.Comment: 17 figure

    A novel antiproton radial diagnostic based on octupole induced ballistic loss

    Get PDF
    We report results from a novel diagnostic that probes the outer radial profile of trapped antiproton clouds. The diagnostic allows us to determine the profile by monitoring the time-history of antiproton losses that occur as an octupole field in the antiproton confinement region is increased. We show several examples of how this diagnostic helps us to understand the radial dynamics of antiprotons in normal and nested Penning-Malmberg traps. Better understanding of these dynamics may aid current attempts to trap antihydrogen atoms

    Stimulation of leukotriene synthesis in intact polymorphonuclear cells by the 5-lipoxygenase inhibitor 3-oxo-tirucallic acid.

    Get PDF
    ABSTRACT Commercially available extracts from Boswellia serrata resin used as anti-inflammatory drugs or phytonutrients show paradoxical concentration-dependent potentiating and inhibitory actions on 5-lipoxygenase (5-LO) product synthesis in stimulated PMNs. In our attempt to characterize the stimulating constituents, we identified the tetracyclic triterpene 3-oxo-tirucallic acid (3-oxo-TA), which, in the range from 2.5 to 15 M, enhanced 5-LO product formation in ionophore-challenged polymorphonuclear cells (PMNs) (e.g., from 1981 Ϯ 177 to 3042 Ϯ 208 pmol at 10 M 3-oxo-TA), and initiated Ca 2ϩ mobilization, MEK-1/2 phosphorylation, 5-LO translocation, and 5-LO product formation in resting cells (534 Ϯ 394 pmol/ 5 ϫ 10 6 PMNs). In cell-free 5-LO assays, 3-oxo-TA acted only inhibitory (IC 50 value of about 3 M), demonstrating the pivotal role of intact cell structure for its activating property. In 3-oxo-TA-challenged PMNs, the mitogen-activated protein kinase kinase (MEK)-1/2 inhibitor PD098059 abolished 5-LO product formation, along with inhibition of MEK-1/2 phosphorylation and 5-LO translocation. The 3-acetoxy derivative of 3-oxo-TA acted like 3-oxo-TA in intact PMNs, whereas 3-hydroxy-TA barely stimulated MEK phosphorylation in resting cells and showed only inhibition on ionophore-induced 5-LO product synthesis. Steroid-type tetracycles neither induced 5-LO activation nor had enhancing or inhibitory effects. In summary, defined natural tetracyclic triterpenes, which act as inhibitors of the 5-LO in the cell-free assay, initiate 5-LO activation by a MEK-inhibitor sensitive mechanism and potentiate stimulated product synthesis in intact cells. Because TAs contribute significantly to the overall biological effects of B. serrata resin extracts, special precaution for standardization is recommended when using B. serrata preparations as drugs or dietary supplements. 5-Lipoxygenase (5-LO; EC 1.13.11.34) catalyzes the first two steps in the biosynthesis of leukotrienes and 5(S)-HETE from arachidonic acid. Leukotrienes and 5-oxo-eicosa-tetraenoic acid, a final metabolite from 5(S)-HETE The enzymatic activity of 5-LO, as well as its binding to other macromolecules, is regulated in a highly complex manner (for concise reviews on many aspects of 5-LO, products, and receptors, se
    corecore