286 research outputs found

    Conceptual Problems of Fractal Cosmology

    Get PDF
    This report continues recent Peebles-Turner debate "Is cosmology solved?" and considers the first results for Sandage's program for "Practical cosmology". A review of conceptual problems of modern cosmological models is given, among them: the nature of the space expansion; recession velocities of distant galaxies more than velocity of light; cosmological Friedmann force; continuous creation of gravitating mass in Friedmann's equation; cosmological pressure is not able to produce a work; cosmological gravitational frequency shift; Friedmann-Holtsmark paradox; the problem of the cosmological constant; Einstein's and Mandelbrot's Cosmological Principles; fractality of observed galaxy distribution; Sandage's 21st problem: Hubble - de Vaucouleurs paradox; quantum nature of gravity force.Comment: 17 pages, no Figures, report presented at Gamow Memorial Conference, August 1999, St.-Petersburg, Russi

    Classical Cosmological Tests for Galaxies of the Hubble Ultra Deep Field

    Full text link
    Images of the Hubble Ultra Deep Field are analyzed to obtain a catalog of galaxies for which the angular sizes, surface brightness, photometric redshifts, and absolute magnitudes are found. The catalog contains a total of about 4000 galaxies identified at a high signal-to-noise ratio, which allows the cosmological relations angular size{redshift and surface brightness-redshift to be analyzed. The parameters of the evolution of linear sizes and surface brightness of distant galaxies in the redshift interval 0.5-6.5 are estimated in terms of a grid of cosmological models with different density parameters. The distribution of photometric redshifts of galaxies is analyzed and possible superlarge inhomogeneities in the radial distribution of galaxies are found with scale lengths as large as 2000 Mpc.Comment: 23 pages, 9 figures, 1 tabl

    Properties of Quasar-Galaxy Associations and Gravitational Mesolensing by Halo Objects

    Get PDF
    A new catalog of 8382 close quasar-galaxy pairs is presented. The catalog was composed using published catalogs of quasars and active galactic nuclei containing 11358 objects, as well as the LEDA catalog of galaxies, which contains on the order of 100 thousand objects. The search for pairs was carried out in such a way that the linear distance between the galaxy and projected quasar does not exceed 150kpc. Based on these new data, the dependence of the number of pairs on a=z_G/z_Q is analysed, where z_G and z_Q are the redshifts of the galaxy and quasar, respectively, revealing an excess of pairs with a<0.1 and a>0.9. This means that the galaxies in pairs are preferably located close to either the observer or the quasar and avoid intermediate distances along the line of sight to the quasar. Computer simulations demonstrate that it is not possible to explain this number of pairs with the observed distribution in a as the result of chance positional coincidences with a uniform spatial distribution of galaxies. Data on globular clusters show that the excess of pairs with a0.9 is consistent with the hypothesis that we are observing distant compact objects that are strongly gravitationally lensed by transparent lenses with a King mass distribution located in the halos of nearby galaxies. The Hubble diagram for galaxies and quasars is presented. Observational tests of the mesolensing hypothesis are formulated.Comment: 11 pages, 7 figure

    Production of heat-resistant EP220 and EP929 alloys by high-temperature treatment of melt

    Full text link
    Analysis of samples of EP220 and EP929 alloys in the liquid and solid state permits the determination of the parameters for high-temperature melt treatment in their production. On heating to specific temperatures, the structure of the liquid alloys moves closer to equilibrium. In the solidification of such melt, the cast metal formed is characterized by finer grain structure, greater dispersity of the dendrites, and greater density and microhardness of the matrix. Industrial adoption of high-temperature melt treatment will improve plasticity, increase the long-term strength, and boost the product yield. The proposed technology does not fully utilize the potential of the alloy structure obtained after high-temperature melt treatment. The effect may be amplified by more prolonged holding of the melt at 1650°C and by optimization of the vacuum-arc heating, deformation, and heat treatment, in the light of the structural changes in the experimental samples of solid metal. © 2013 Allerton Press, Inc

    Classical evolution of fractal measures on the lattice

    Get PDF
    We consider the classical evolution of a lattice of non-linear coupled oscillators for a special case of initial conditions resembling the equilibrium state of a macroscopic thermal system at the critical point. The displacements of the oscillators define initially a fractal measure on the lattice associated with the scaling properties of the order parameter fluctuations in the corresponding critical system. Assuming a sudden symmetry breaking (quench), leading to a change in the equilibrium position of each oscillator, we investigate in some detail the deformation of the initial fractal geometry as time evolves. In particular we show that traces of the critical fractal measure can sustain for large times and we extract the properties of the chain which determine the associated time-scales. Our analysis applies generally to critical systems for which, after a slow developing phase where equilibrium conditions are justified, a rapid evolution, induced by a sudden symmetry breaking, emerges in time scales much shorter than the corresponding relaxation or observation time. In particular, it can be used in the fireball evolution in a heavy-ion collision experiment, where the QCD critical point emerges, or in the study of evolving fractals of astrophysical and cosmological scales, and may lead to determination of the initial critical properties of the Universe through observations in the symmetry broken phase.Comment: 15 pages, 15 figures, version publiced at Physical Review

    Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    Get PDF
    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 µm^2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyzed in detail and equals only 25 nW. Due to the small HEB volume and wide antenna bandwidth, an unwanted direct detection effect is observed which decreases the apparent sensitivity. Correcting for this effect results in a receiver noise temperature of 700 K at 1.46 THz. The intermediate frequency (IF) gain bandwidth is 2.3 GHz and the IF noise bandwidth is 4 GHz. The single channel receiver stability is limited to 0.2–0.3 s in a 50 MHz bandwidth

    Types of geoecological research and areas of their application

    Full text link
    Planning for the environmental management, construction, as well as forecasting the impact of human activity on the environment, should be carried out based on the provisions of geoecology, which combines relationships in geographical, biological (ecological) and social-production systems. In this case, a systematic approach, as well as knowledge of the links between different systems, will allow us to simulate the level of human impact on the environment and calculate the optimal degree of intervention in its structure. Modern methods of geoecological studies used to assess the impact of human economic activity on the environment are considered, a comparison of geoecological mapping in Russian and foreign studies is carried out, the main stages necessary for conducting geoecological studies are indicated. © 2019 Published under licence by IOP Publishing Ltd.Authors are grateful for the support of experimental works by Act 211 Government Russian Federation, contract no. 02.A03.21.0006
    corecore