29 research outputs found

    Induction of Membrane Ceramides: A Novel Strategy to Interfere with T Lymphocyte Cytoskeletal Reorganisation in Viral Immunosuppression

    Get PDF
    Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase–dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to β1 integrin ligation or αCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics

    Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV) Infection in an In Vivo Model.

    Get PDF
    Chicken Anaemia Virus (CAV) is an economically important virus that targets lymphoid and erythroblastoid progenitor cells leading to immunosuppression. This study aimed to investigate the interplay between viral infection and the host's immune response to better understand the pathways that lead to CAV-induced immunosuppression. To mimic vertical transmission of CAV in the absence of maternally-derived antibody, day-old chicks were infected and their responses measured at various time-points post-infection by qRT-PCR and gene expression microarrays. The kinetics of mRNA expression levels of signature cytokines of innate and adaptive immune responses were determined by qRT-PCR. The global gene expression profiles of mock-infected (control) and CAV-infected chickens at 14 dpi were also compared using a chicken immune-related 5K microarray. Although in the thymus there was evidence of induction of an innate immune response following CAV infection, this was limited in magnitude. There was little evidence of a Th1 adaptive immune response in any lymphoid tissue, as would normally be expected in response to viral infection. Most cytokines associated with Th1, Th2 or Treg subsets were down-regulated, except IL-2, IL-13, IL-10 and IFNγ, which were all up-regulated in thymus and bone marrow. From the microarray studies, genes that exhibited significant (greater than 1.5-fold, false discovery rate <0.05) changes in expression in thymus and bone marrow on CAV infection were mainly associated with T-cell receptor signalling, immune response, transcriptional regulation, intracellular signalling and regulation of apoptosis. Expression levels of a number of adaptor proteins, such as src-like adaptor protein (SLA), a negative regulator of T-cell receptor signalling and the transcription factor Special AT-rich Binding Protein 1 (SATB1), were significantly down-regulated by CAV infection, suggesting potential roles for these genes as regulators of viral infection or cell defence. These results extend our understanding of CAV-induced immunosuppression and suggest a global immune dysregulation following CAV infection

    Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins.

    No full text
    Bacterial pore-forming toxins compromise plasmalemmal integrity, leading to Ca2+ influx, leakage of the cytoplasm, and cell death. Such lesions can be repaired by microvesicular shedding or by the endocytic uptake of the injured membrane sites. Cells have at their disposal an entire toolbox of repair proteins for the identification and elimination of membrane lesions. Sphingomyelinases catalyze the breakdown of sphingomyelin into ceramide and phosphocholine. Sphingomyelin is predominantly localized in the outer leaflet, where it is hydrolyzed by acid sphingomyelinase (ASM) after lysosomal fusion with the plasma membrane. The magnesium-dependent neutral sphingomyelinase (NSM)-2 is found at the inner leaflet of the plasmalemma. Because either sphingomyelinase has been ascribed a role in the cellular stress response, we investigated their role in plasma membrane repair and cellular survival after treatment with the pore-forming toxins listeriolysin O (LLO) or pneumolysin (PLY). Jurkat T cells, in which ASM or NSM-2 was down-regulated [ASM knockdown (KD) or NSM-2 KD cells], showed inverse reactions to toxin-induced membrane damage: ASM KD cells displayed reduced toxin resistance, decreased viability, and defects in membrane repair. In contrast, the down-regulation of NSM-2 led to an increase in viability and enhanced plasmalemmal repair. Yet, in addition to the increased plasmalemmal repair, the enhanced toxin resistance of NSM-2 KD cells also appeared to be dependent on the activation of p38/MAPK, which was constitutively activated, whereas in ASM KD cells, the p38/MAPK activation was constitutively blunted.-Schoenauer, R., Larpin, Y., Babiychuk, E. B., Drücker, P., Babiychuk, V. S., Avota, E., Schneider-Schaulies, S., Schumacher, F., Kleuser, B., Köffel, R., Draeger, A. Down-regulation of acid sphingomyelinase and neutral sphingomyelinase-2 inversely determines the cellular resistance to plasmalemmal injury by pore-forming toxins

    Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling

    No full text
    Double-stranded RNA (dsRNA) is produced during the replication cycle of most viruses and triggers antiviral immune responses through Toll-like receptor 3 (TLR3). However, the molecular mechanisms and subcellular compartments associated with dsRNA-TLR3-mediated signaling are largely unknown. Here we show that c-Src tyrosine kinase is activated by dsRNA in human monocyte-derived dendritic cells, and is recruited to TLR3 in a dsRNA-dependent manner. DsRNA-induced activation of interferon-regulatory factor 3 and signal transducer and activator of transcription 1 was abolished in Src kinase-deficient cells, and restored by adding back c-Src, suggesting a central role of c-Src in antiviral immunity. We also provide evidence that TLR3 is localized in the endoplasmic reticulum of unstimulated cells, moves to dsRNA-containing endosomes in response to dsRNA, and colocalizes with c-Src on endosomes containing dsRNA in the lumen. These results provide novel insight into the molecular mechanisms of TLR3-mediated signaling, which may contribute to the understanding of innate immune responses during viral infections

    Autonomous Role of 3′-Terminal CCCA in Directing Transcription of RNAs by Qβ Replicase

    No full text
    We have studied transcription in vitro by Qβ replicase to deduce the minimal features needed for efficient end-to-end copying of an RNA template. Our studies have used templates ca. 30 nucleotides long that are expected to be free of secondary structure, permitting unambiguous analysis of the role of template sequence in directing transcription. A 3′-terminal CCCA (3′-CCCA) directs transcriptional initiation to opposite the underlined C; the amount of transcription is comparable between RNAs possessing upstream (CCA)(n) tracts, A-rich sequences, or a highly folded domain and is also comparable in single-round transcription assays to transcription of two amplifiable RNAs. Predominant initiation occurs within the 3′-CCCA initiation box when a wide variety of sequences is present immediately upstream, but CCA or a closely similar sequence in that position results in significant internal initiation. Removal of the 3′-A from the 3′-CCCA results in 5- to 10-fold-lower transcription, emphasizing the importance of the nontemplated addition of 3′-A by Qβ replicase during termination. In considering whether 3′-CCCA could provide sufficient specificity for viral transcription, and consequently amplification, in vivo, we note that tRNA(His) is the only stable Escherichia coli RNA with 3′-CCCA. In vitro-generated transcripts corresponding to tRNA(His) served as poor templates for Qβ replicase; this was shown to be due to the inaccessibility of the partially base-paired CCCA. These studies demonstrate that 3′-CCCA plays a major role in the control of transcription by Qβ replicase and that the abundant RNAs present in the host cell should not be efficient templates
    corecore