635 research outputs found

    Direct Model-Based Inversion for Improved Freehand Optical Ultrasound Imaging

    Get PDF
    Optical ultrasound imaging uses light to both generate and detect pulse-echo ultrasound. Recently, we presented a fibre-optic optical ultrasound imaging probe comprising 64 sources and a single receiver that allowed for video-rate, freehand imaging. However, its low number of sources limited the image contrast when using Delay-and-Sum reconstruction. Here, we present an alternative image formation paradigm for optical ultrasound based on model-based inversion, where the low number of sources allows for direct (i.e., non-iterative) inversion under modest hardware requirements. The model accurately incorporates the aperture geometry, frequency-dependent source directivity, and performance variation across the aperture, thereby reducing image artefacts associated with these properties. The method achieves a 15 dB gain in image contrast compared to Delay-and-Sum, at a similar image formation time

    Pencil beam all-optical ultrasound imaging

    Get PDF
    A miniature, directional fibre-optic acoustic source is presented that employs geometrical focussing to generate a nearly-collimated acoustic pencil beam. When paired with a fibre-optic acoustic detector, an all-optical ultrasound probe with an outer diameter of 2.5 mm is obtained that acquires a pulse-echo image line at each probe position without the need for image reconstruction. B-mode images can be acquired by translating the probe and concatenating the image lines, and artefacts resulting from probe positioning uncertainty are shown to be significantly lower than those observed for conventional synthetic aperture scanning of a non-directional acoustic source. The high image quality obtained for excised vascular tissue suggests that the all-optical ultrasound probe is ideally suited for in vivo, interventional applications

    Freehand and Video-Rate All-Optical Ultrasound Imaging

    Get PDF
    All-optical ultrasound (AOUS) imaging, which uses light to both generate and detect ultrasound, is an emerging alternative to conventional electronic ultrasound imaging. To date, AOUS imaging has been performed using paradigms that either resulted in long acquisition times or employed bench-top imaging systems that were impractical for clinical use. In this work, we present a novel AOUS imaging paradigm where scanning optics are used to rapidly synthesise an imaging aperture. This paradigm enabled the first AOUS system with a flexible, handheld imaging probe, which represents a critical step towards clinical translation. This probe, which provides video-rate imaging and a real-time display, is demonstrated with phantoms and in vivo human tissue

    Real-time and Freehand Multimodal Imaging: Combining White Light Endoscopy with All-Optical Ultrasound

    Get PDF
    Minimally invasive surgery offers significant benefits over open surgery in terms of patient recovery, complication rates, and cost. Accurate visualisation is key for successful interventions; however, no single imaging modality offers sufficient resolution, penetration, and soft-tissue contrast to adequately monitor interventional treatment. Consequently, multimodal interventional imaging is intensively investigated. All-optical ultrasound (AOUS) imaging is an emerging modality where light is used to both generate and detect ultrasound. Using fibre-optics, highly miniaturised imaging probes can be fabricated that yield high-quality pulse-echo images and are readily integrated into minimally invasive interventional instruments. In this work, we present the integration of a miniature (diameter: 800 µm), highly directional AOUS imaging probe into a commercially available white light urethroscope, and demonstrate the first real-time, 3D multimodal imaging combining AOUS and white light endoscopy. Through the addition of an electromagnetic tracker, the position and pose of the instrument could be continuously recorded. This facilitated accurate real-time registration of the imaging modalities, as well as freehand operation of the instrument. In addition, the freehand imaging paradigm allowed for “piece-wise” scanning where the instrument was retracted and repositioned without recalibration. The presented imaging probe and system could significantly improve the quality of image guidance during interventional surgery

    Versatile and scalable fabrication method for laser-generated focused ultrasound transducers

    Get PDF
    A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15–20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 μm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm

    Spin susceptibility of the superfluid 3^{3}He-B in aerogel

    Full text link
    The temperature dependence of paramagnetic susceptibility of the superfluid ^{3}He-B in aerogel is found. Calculations have been performed for an arbitrary phase shift of s-wave scattering in the framework of BCS weak coupling theory and the simplest model of aerogel as an aggregate of homogeneously distributed ordinary impurities. Both limiting cases of the Born and unitary scattering can be easily obtained from the general result. The existence of gapless superfluidity starting at the critical impurity concentration depending on the value of the scattering phase has been demonstrated. While larger than in the bulk liquid the calculated susceptibility of the B-phase in aerogel proves to be conspicuously smaller than that determined experimentally in the high pressure region.Comment: 10 pages, 4 figures, REVTe

    A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging

    Get PDF
    A miniature all-optical ultrasound imaging system is presented that generates three-dimensional images using a stationary, real acoustic source aperture. Discrete acoustic sources were sequentially addressed by scanning a focussed optical beam across the proximal end of a coherent fibre bundle; high-frequency ultrasound (156% fractional bandwidth centred around 13.5 MHz) was generated photoacoustically in the corresponding regions of an optically absorbing coating deposited at the distal end. Paired with a single fibre-optic ultrasound detector, the imaging probe (3.5 mm outer diameter) achieved high on-axis resolutions of 97 μm, 179 μm and 110 μm in the x, y and z directions, respectively. Furthermore, the optical scan pattern, and thus the acoustic source array geometry, was readily reconfigured. Implementing four different array geometries revealed a strong dependency of the image quality on the source location pattern. Thus, by employing optical technology, a miniature ultrasound probe was fabricated that allows for arbitrary source array geometries, which is suitable for three-dimensional endoscopic and laparoscopic imaging, as was demonstrated on ex vivo porcine cardiac tissue

    A new Architecture for High Speed, Low Latency NB-LDPC Check Node Processing

    No full text
    International audience—Non-binary low-density parity-check codes have superior communications performance compared to their binary counterparts. However, to be an option for future standards, efficient hardware architectures must be developed. State-of-the-art decoding algorithms lead to architectures suffering from low throughput and high latency. The check node function accounts for the largest part of the decoders overall complexity. In this paper a new hardware aware check node algorithm and its architecture is proposed. It has state-of-the-art communications performance while reducing the decoding complexity. The presented architecture has a 14 times higher area efficiency, increases the energy efficiency by factor 2.5 and reduces the latency by factor of 3.5 compared to a state-of-the-art architecture
    • …
    corecore