52 research outputs found

    Natural cycle in vitro fertilisation (IVF) for subfertile couples

    Get PDF
    Background Subfertility affects 15% to 20% of couples trying to conceive. In vitro fertilisation (IVF) is one of the assisted reproduction techniques developed to improve chances of achieving pregnancy. In the standard IVF method with controlled ovarian hyperstimulation (COH), growth and development of multiple follicles are stimulated by using gonadotrophins, often combined with a gonadotrophin-releasing hormone (GnRH) agonist or antagonist. Although it is an established method of conception for subfertile couples, the treatment is expensive and has a high risk of adverse effects. Studies have shown that IVF in a natural cycle (NC) or a modified natural cycle (MNC) might be a promising low risk and low cost alternative to the standard stimulated IVF treatment since the available dominant follicle of each cycle is used. In this review, we included available randomised controlled studies comparing natural cycle IVF (NC and MNC) with standard IVF. Objectives To compare the efficacy and safety of natural cycle IVF (including both NC-IVF and MNC-IVF) with controlled ovarian hyperstimulation IVF (COH-IVF) in subfertile couples. Search methods An extended search including of the Menstrual Disorders and Subfertility Group (MDSG) Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, conference abstracts in the Web of Knowledge, the World Health Organization International Trials Registry Platform search portal, LILACS database, PubMed and the OpenSIGLE database was conducted according to Cochrane guidelines. The last search was on 31st July 2013. Selection criteria All randomised controlled trials (RCTs) comparing either natural cycle IVF or modified natural cycle IVF versus standard IVF in subfertile couples were included. Data collection and analysis Data selection and extraction and risk of bias assessment were carried out independently by two authors (TA and AC). The primary outcome measures were live birth rate and ovarian hyperstimulation syndrome (OHSS) rate per randomised woman. We calculated Mantel-Haenszel odds ratios for each dichotomous outcome and either the mean difference or the standardised mean difference (SMD) for continuous outcomes, with 95% confidence intervals (CIs). A fixed effect model was used unless there was substantial heterogeneity, in which case a random effects model was used. Main results Six randomised controlled trials with a total of 788 women were included. The largest of these trials included 396 women eligible for this review. No evidence of a statistically significant difference was found between natural cycle and standard IVF in live birth rates (OR 0.68, 95% CI 0.46 to 1.01, two studies, 425 women, I-2=0%, moderate quality evidence). The evidence suggests that for a woman with a 53% chance of live birth using standard IVF, the chance using natural cycle IVF would range from 34% to 53%. There was no evidence of a statistically significant difference between natural cycle and standard IVF in rates of OHSS (OR 0.19, 95% CI 0.01 to 4.06, one study, 60 women, very low quality evidence), clinical pregnancy (OR 0.52 95% CI 0.17 to 1.61, 4 studies, 351 women, I-2=63%, low quality evidence), ongoing pregnancy (OR 0.72, 95% CI 0.50 to 1.05, three studies, 485 women, I-2=0%, moderate quality evidence), multiple pregnancy (OR 0.76, 95% CI 0.25 to 2.31, 2 studies, 527 women, I-2=0%, very low quality evidence), gestational abnormalities (OR 0.44 95% CI 0.03 to 5.93, 1 study, 18 women, very low quality evidence) or cycle cancellations (OR 8.98, 95% CI 0.20 to 393.66, 2 studies, 159 women, I-2=83%, very low quality evidence). One trial reported that the oocyte retrieval rate was significantly lower in the natural cycle group (MD -4.40, 95% CI -7.87 to -0.93, 60 women, very low quality evidence). There were insufficient data to draw any conclusions about rates of treatment cancellation. Findings on treatment costs were inconsistent and more data are awaited. The evidence was limited by imprecision. Findings for pregnancy rate and for cycle cancellation were sensitive to the choice of statistical model: for these outcomes, use of a fixed effect model suggested a benefit for the standard IVF group. Moreover the largest trial has not yet completed follow up, though data have been reported for over 95% of women. Authors' conclusions Further evidence from well conducted large trials is awaited on natural cycle IVF treatment. Future trials should compare natural cycle IVF with standard IVF. Outcomes should include cumulative live birth and pregnancy rates, the number of treatment cycles necessary to reach live birth, treatment costs and adverse effects

    Docking of LDCVs Is Modulated by Lower Intracellular [Ca2+] than Priming

    Get PDF
    Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca2+ concentration ([Ca2+]i). However, the functional implications of [Ca2+]i in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca2+]i. Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca2+]i. We found that a free [Ca2+]i of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca2+]i of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca2+ concentrations, with docking efficiency being the most robust at 500 nM

    Fast, Multiphase Volume Adaptation to Hyperosmotic Shock by Escherichia coli

    Get PDF
    All living cells employ an array of different mechanisms to help them survive changes in extra cellular osmotic pressure. The difference in the concentration of chemicals in a bacterium's cytoplasm and the external environment generates an osmotic pressure that inflates the cell. It is thought that the bacterium Escherichia coli use a number of interconnected systems to adapt to changes in external pressure, allowing them to maintain turgor and live in surroundings that range more than two-hundred-fold in external osmolality. Here, we use fluorescence imaging to make the first measurements of cell volume changes over time during hyperosmotic shock and subsequent adaptation on a single cell level in vivo with a time resolution on the order of seconds. We directly observe two previously unseen phases of the cytoplasmic water efflux upon hyperosmotic shock. Furthermore, we monitor cell volume changes during the post-shock recovery and observe a two-phase response that depends on the shock magnitude. The initial phase of recovery is fast, on the order of 15–20 min and shows little cell-to-cell variation. For large sucrose shocks, a secondary phase that lasts several hours adds to the recovery. We find that cells are able to recover fully from shocks as high as 1 Osmol/kg using existing systems, but that for larger shocks, protein synthesis is required for full recovery

    Ectopic pregnancy secondary to in vitro fertilisation-embryo transfer: pathogenic mechanisms and management strategies

    Get PDF

    Geulen in estuaria: 1-D modellering van evenwijdige geulen

    No full text

    Reproductie van de geostrofische versnelling in M1000

    No full text

    Statistical description of ocean waves

    No full text
    Lecture note on wave statistics, short term and long term distribution, extreme value determination, wave climate.Hydraulic EngineeringCivil Engineering and Geoscience
    • …
    corecore