15 research outputs found
Atmospheric Pressure Mass Spectrometry of Single Viruses and Nanoparticles by Nanoelectromechanical Systems
Mass spectrometry of intact nanoparticles and viruses can serve as a potent
characterization tool for material science and biophysics. Inaccessible by
widespread commercial techniques, the mass of single nanoparticles and viruses
(>10MDa) can be readily measured by NEMS (Nanoelectromechanical Systems) based
Mass Spectrometry, where charged and isolated analyte particles are generated
by Electrospray Ionization (ESI) in air and transported onto the NEMS resonator
for capture and detection. However, the applicability of NEMS as a practical
solution is hindered by their miniscule surface area, which results in poor
limit-of-detection and low capture efficiency values. Another hindrance is the
necessity to house the NEMS inside complex vacuum systems, which is required in
part to focus analytes towards the miniscule detection surface of the NEMS.
Here, we overcome both limitations by integrating an ion lens onto the NEMS
chip. The ion lens is composed of a polymer layer, which charges up by
receiving part of the ions incoming from the ESI tip and consequently starts to
focus the analytes towards an open window aligned with the active area of the
NEMS electrostatically. With this integrated system, we have detected the mass
of gold and polystyrene nanoparticles under ambient conditions and with two
orders-of-magnitude improvement in capture efficiency compared to the
state-of-the-art. We then applied this technology to obtain the mass spectrum
of SARS-CoV-2 and BoHV-1 virions. With the increase in analytical throughput,
the simplicity of the overall setup and the operation capability under ambient
conditions, the technique demonstrates that NEMS Mass Spectrometry can be
deployed for mass detection of engineered nanoparticles and biological samples
efficiently.Comment: 38 pages, 6 figure
Efficient sensing of single viruses and nanoparticles by nanomechanical sensors integrated with ion lenses
Nanoelectromechanical Systems (NEMS) resonators can be used to detect, weigh and identify single nanoparticles and viruses. Given their small footprint, however, NEMS are plagued by low analyte detection rate since the active sensing cross-sections to capture analyte particles is very small. Here we report on the development of an on-chip focusing lens operating in air and integrated with the NEMS sensor. The integrated system increases the capture efficiency by orders of magnitude, and allows for operation under ambient conditions to measure the mass of nanoparticles and virions. With this system, mass spectrum of nanoparticle samples and mammalian viruses at biologically relevant concentrations can be characterized within less than 30 minutes
Atmospheric pressure mass spectrometry of single viruses and nanoparticles by nanoelectromechanical systems
Mass spectrometry of intact nanoparticles and viruses can serve as a potent characterization tool for material science and biophysics. Inaccessible by widespread commercial techniques, the mass of single nanoparticles and viruses (>10MDa) can be readily measured by nanoelectromechanical systems (NEMS)-based mass spectrometry, where charged and isolated analyte particles are generated by electrospray ionization (ESI) in air and transported onto the NEMS resonator for capture and detection. However, the applicability of NEMS as a practical solution is hindered by their miniscule surface area, which results in poor limit-of-detection and low capture efficiency values. Another hindrance is the necessity to house the NEMS inside complex vacuum systems, which is required in part to focus analytes toward the miniscule detection surface of the NEMS. Here, we overcome both limitations by integrating an ion lens onto the NEMS chip. The ion lens is composed of a polymer layer, which charges up by receiving part of the ions incoming from the ESI tip and consequently starts to focus the analytes toward an open window aligned with the active area of the NEMS electrostatically. With this integrated system, we have detected the mass of gold and polystyrene nanoparticles under ambient conditions and with two orders-of-magnitude improvement in capture efficiency compared to the state-of-the-art. We then applied this technology to obtain the mass spectrum of SARS-CoV-2 and BoHV-1 virions. With the increase in analytical throughput, the simplicity of the overall setup, and the operation capability under ambient conditions, the technique demonstrates that NEMS mass spectrometry can be deployed for mass detection of engineered nanoparticles and biological samples efficiently
Dielectric Detection of Single Nanoparticles Using a Microwave Resonator Integrated with a Nanopore
The characterization
of individual nanoparticles in a liquid constitutes
a critical challenge for the environmental, material, and biological
sciences. To detect nanoparticles, electronic approaches are especially
desirable owing to their compactness and lower costs. While electronic
detection in the form of resistive-pulse sensing has enabled the acquisition
of geometric properties of various analytes, impedimetric measurements
to obtain dielectric signatures of nanoparticles have scarcely been
reported. To explore this orthogonal sensing modality, we developed
an impedimetric sensor based on a microwave resonator with a nanoscale
sensing gap surrounding a nanopore built on a 220 nm silicon nitride
membrane. The microwave resonator has a coplanar waveguide configuration
with a resonance frequency of approximately 6.6 GHz. The approach
of single nanoparticles near the sensing region and their translocation
through the nanopores induced sudden changes in the impedance of the
structure. The impedance changes, in turn, were picked up by the phase
response of the microwave resonator. We worked with 100 and 50 nm
polystyrene nanoparticles to observe single-particle events. Our current
implementation was limited by the nonuniform electric field at the
sensing region. This work provides a complementary sensing modality
for nanoparticle characterization, where the dielectric response,
rather than ionic current, determines the signal