220 research outputs found

    The brown seaweeds of Scotland, their importance and applications

    Get PDF
    More than 50% of the UK coastline is situated in Scotland under legislative jurisdiction; therefore, there is a great opportunity for regionally focused economic development by the rational use of sustainable marine bio-sources. We review the importance of seaweeds in general, and more specifically, wrack brown seaweeds which are washed from the sea and accumulated in the wrack zone and their economic impact. Rules and regulations governing the harvesting of seaweed, potential sites for harvesting, along with the status of industrial application are discussed. We describe extraction and separation methods of natural products from these seaweeds along with their phytochemical profiles. Many potential applications for these derivatives exist in agriculture, energy, nutrition, biomaterials, waste treatment (composting), pharmaceuticals, cosmetics and other applications. The chemical diversity of the natural compounds present in these seaweeds is an opportunity to further investigate a range of chemical scaffolds, evaluate their biological activities, and develop them for better pharmaceutical or biotechnological applications. The key message is the significant opportunity for the development of high value products from a seaweed processing industry in Scotland, based on a sustainable resource, and locally regulated

    DETERMINATION CADMIUM, LEAD AND ZINC IN HUMAN HAIR BY USING FLAME ATOMIC ABSORPTION SPECTROMETRY (FAAS)

    Get PDF
    The heavy metals mean serious hazard in environmental pollution. Some of them are vital for many organisms in a low concentration, however the others ought to be poisonous at low concentrations, too. This paper gives an example for the correlation of the attention in human hair and in the environment of different heavy metals. Human hair (n=50) Volunteers (35 males and 15 females) of different age groups between 1 to 57 years samples were collected in Al – Ajailat, Libya. Hair samples were analyzed for heavy metals (Cd, Pb and Zn) by Flame Atomic Absorption Spectrophotometric technique (FAAS). The results showed that the samples concentrations ranged between 0.0001 and 0.3840 mg.kg−1 for cadmium, followed by zinc between 68.99 mg kg−1 and 225mg. kg−1while lead was between 0.632 mg kg−1 and 7.708mg. Kg−1. The results indicated that metal concentrations in male samples varied based on age, such that age group 33-43 years had the highest zinc concentration (206.2±11.6 mg/kg), and age group 1-10 years had the highest Cd (0.384±0.01 mg/kg) and Pb (1.929±0.05 mg/kg) concentrations. while, the cadmium and lead contents in children’s hair samples of both sexes was higher than compared to the values available in some countries. The difference between male and female concentration could be due to individual differences in exposure to heavy metal load as a result of habitual or environmental factors

    Aerosol and splatter generation with rotary handpieces used in restorative and orthodontic dentistry:a systematic review

    Get PDF
    Abstract: Introduction: The COVID-19 pandemic has caused major disruptions in dental care globally, in part due to the potential for contaminated aerosol to be generated by dental activities. This systematic review assesses the literature for changes in aerosol-contamination levels when rotary instruments are used, (1) as distance increases from patient’s mouth; (2) as time passes after the procedure; and (3) when using different types of handpieces. Methods: The review methods and reporting are in line with PRISMA statements. A structured search was conducted over five platforms (September 2021). Studies were assessed independently by two reviewers. To be eligible studies had to assess changes in levels of aerosol contamination over different distances, and time points, with rotary hand instruments. Studies’ methodologies and the sensitivity of the contamination-measurement approaches were evaluated. Results are presented descriptively. Results: From 422 papers identified, 23 studies were eligible. All investigated restorative procedures using rotary instruments and one study additionally looked at orthodontic bracket adhesive material removal. The results suggest contamination is significantly reduced over time and distance. However, for almost all studies that investigated these two factors, the sizes of the contaminated particles were not considered, and there were inconclusive findings regarding whether electric-driven handpieces generate lower levels of contaminated particles. Conclusion: Aerosol contamination levels reduce as distances, and post-procedure times increase. However, there was sparce and inconsistent evidence on the clearing time and no conclusions could be drawn. High-speed handpieces produce significantly higher levels of contamination than slow-speed ones, and to a lesser extent, micro-motor handpieces. However, when micro-motor handpieces were used with water, the contamination levels rose and were similar to high-speed handpiece contamination levels

    Dental periodontal procedures: a systematic review of contamination (splatter, droplets and aerosol) in relation to COVID-19

    Get PDF
    Introduction The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic has had a significant effect on the delivery of routine dentistry; and in particular, periodontal care across the world. This systematic review examines the literature relating to splatter, droplet settle and aerosol for periodontal procedures and forms part of a wider body of research to understand the risk of contamination in relation to periodontal care procedures relevant to COVID-19. Methods A search of the literature was carried out using key terms and MeSH words relating to the review questions. Sources included Medline (OVID), Embase (OVID), Cochrane Central Register of Controlled Trials, Scopus, Web of Science and LILACS, ClinicalTrials.Gov. Studies meeting inclusion criteria were screened in duplicate and data extraction was carried out using a template. All studies were assessed for methodological quality and sensitivity. Narrative synthesis was undertaken. Results Fifty studies were included in the review with procedures including ultrasonic scaling (n = 44), air polishing (n = 4), prophylaxis (n = 2) and hand scaling (n = 3). Outcomes included bacterial (colony-forming units e.g. on settle plates) or blood contamination (e.g. visible splatter) and non bacterial, non blood (e.g. chemiluminescence or coloured dyes) contamination. All studies found contamination at all sites although the contamination associated with hand scaling was very low. Contamination was identified in all of the studies even where suction was used at baseline. Higher power settings created greater contamination. Distribution of contamination varied in relation to operator position and was found on the operator, patient and assistant with higher levels around the head of the operator and the mouth and chest of the patient. Settle was identified 30 min after treatments had finished but returned to background levels when measured at or after an hour. The evidence was generally low to medium quality and likely to underestimate contamination. Conclusion Ultrasonic scaling, air polishing and prophylaxis procedures produce contamination (splatter, droplets and aerosol) in the presence of suction, with a small amount of evidence showing droplets taking between 30 min and 1 h to settle. Consideration should be given to infection control, areas of cleaning particularly around the patient and appropriate personal protective equipment, with particular attention to respiratory, facial and body protection for these procedures. In addition, the use of lower power settings should be considered to reduce the amount and spread of contamination

    A newly developed integrative bio-inspired artificial intelligence model for wind speed prediction

    Get PDF
    Accurate wind speed (WS) modelling is crucial for optimal utilization of wind energy. NumericalWeather Prediction (NWP) techniques, generally used for WS modelling are not only less cost-effective but also poor in predicting in shorter time horizon. Novel WS prediction models based on the multivariate empirical mode decomposition (MEMD), random forest (RF) and Kernel Ridge Regression (KRR) were constructed in this paper better accuracy in WS prediction. Particle swarm optimization algorithm (PSO) was employed to optimize the parameters of the hybridized MEMD model with RF (MEMD-PSO-RF) and KRR (MEMD-PSO-KRR) models. Obtained results were compared to those of the standalone RF and KRR models. The proposed methodology is applied for monthly WS prediction at meteorological stations of Iraq, Baghdad (Station1) and Mosul (Station2) for the period 1977-2013. Results showed higher accuracy of MEMD-PSO-RF model in predicting WS at both stations with a correlation coefficient (r) of 0.972 and r D 0.971 during testing phase at Station1 and Station2, respectively. The MEMD-PSO-KRR was found as the second most accurate model followed by Standalone RF and KRR, but all showed a competitive performance to the MEMD-PSO-RF model. The outcomes of this work indicated that the MEMD-PSO-RF model has a remarkable performance in predicting WS and can be considered for practical applications

    Treatment of synthetic textile wastewater containing dye mixtures with microcosms

    Get PDF
    The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH4-N), and nitrate-nitrogen (NO3-N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development

    European Society of Cardiology quality indicators for the prevention and management of cancer therapy-related cardiovascular toxicity in cancer treatment.

    Get PDF
    AIMS: To develop quality indicators (QIs) for the evaluation of the prevention and management of cancer therapy-related cardiovascular toxicity. METHODS AND RESULTS: We followed the European Society of Cardiology (ESC) methodology for QI development which comprises (i) identifying the key domains of care for the prevention and management of cancer therapy-related cardiovascular toxicity in patients on cancer treatment, (ii) performing a systematic review of the literature to develop candidate QIs, and (iii) selecting of the final set of QIs using a modified Delphi process. Work was undertaken in parallel with the writing of the 2022 ESC Guidelines on Cardio-Oncology and in collaboration with the European Haematology Association, the European Society for Therapeutic Radiology and Oncology and the International Cardio-Oncology Society. In total, 5 main and 9 secondary QIs were selected across five domains of care: (i) Structural framework, (ii) Baseline cardiovascular risk assessment, (iii) Cancer therapy related cardiovascular toxicity, (iv) Predictors of outcomes, and (v) Monitoring of cardiovascular complications during cancer therapy. CONCLUSION: We present the ESC Cardio-Oncology QIs with their development process and provide an overview of the scientific rationale for their selection. These indicators are aimed at quantifying and improving the adherence to guideline-recommended clinical practice and improving patient outcomes

    European Society of Cardiology quality indicators for the prevention and management of cancer therapy-related cardiovascular toxicity in cancer treatment.

    Get PDF
    AIMS: To develop quality indicators (QIs) for the evaluation of the prevention and management of cancer therapy-related cardiovascular toxicity. METHODS AND RESULTS: We followed the European Society of Cardiology (ESC) methodology for QI development which comprises (i) identifying the key domains of care for the prevention and management of cancer therapy-related cardiovascular toxicity in patients on cancer treatment, (ii) performing a systematic review of the literature to develop candidate QIs, and (iii) selecting of the final set of QIs using a modified Delphi process. Work was undertaken in parallel with the writing of the 2022 ESC Guidelines on Cardio-Oncology and in collaboration with the European Haematology Association, the European Society for Therapeutic Radiology and Oncology and the International Cardio-Oncology Society. In total, 5 main and 9 secondary QIs were selected across five domains of care: (i) Structural framework, (ii) Baseline cardiovascular risk assessment, (iii) Cancer therapy related cardiovascular toxicity, (iv) Predictors of outcomes, and (v) Monitoring of cardiovascular complications during cancer therapy. CONCLUSION: We present the ESC Cardio-Oncology QIs with their development process and provide an overview of the scientific rationale for their selection. These indicators are aimed at quantifying and improving the adherence to guideline-recommended clinical practice and improving patient outcomes
    corecore