1,085 research outputs found

    Microstructure, magneto-transport and magnetic properties of Gd-doped magnetron-sputtered amorphous carbon

    Full text link
    The magnetic rare earth element gadolinium (Gd) was doped into thin films of amorphous carbon (hydrogenated \textit{a}-C:H, or hydrogen-free \textit{a}-C) using magnetron co-sputtering. The Gd acted as a magnetic as well as an electrical dopant, resulting in an enormous negative magnetoresistance below a temperature (Tâ€ČT'). Hydrogen was introduced to control the amorphous carbon bonding structure. High-resolution electron microscopy, ion-beam analysis and Raman spectroscopy were used to characterize the influence of Gd doping on the \textit{a-}Gdx_xC1−x_{1-x}(:Hy_y) film morphology, composition, density and bonding. The films were largely amorphous and homogeneous up to xx=22.0 at.%. As the Gd doping increased, the sp2sp^{2}-bonded carbon atoms evolved from carbon chains to 6-member graphitic rings. Incorporation of H opened up the graphitic rings and stabilized a sp2sp^{2}-rich carbon-chain random network. The transport properties not only depended on Gd doping, but were also very sensitive to the sp2sp^{2} ordering. Magnetic properties, such as the spin-glass freezing temperature and susceptibility, scaled with the Gd concentration.Comment: 9 figure

    Effect of Native Defects on Optical Properties of InxGa1-xN Alloys

    Full text link
    The energy position of the optical absorption edge and the free carrier populations in InxGa1-xN ternary alloys can be controlled using high energy 4He+ irradiation. The blue shift of the absorption edge after irradiation in In-rich material (x > 0.34) is attributed to the band-filling effect (Burstein-Moss shift) due to the native donors introduced by the irradiation. In Ga-rich material, optical absorption measurements show that the irradiation-introduced native defects are inside the bandgap, where they are incorporated as acceptors. The observed irradiation-produced changes in the optical absorption edge and the carrier populations in InxGa1-xN are in excellent agreement with the predictions of the amphoteric defect model

    The efficacy of low vision devices for students in specialized schools for students who are blind in Kathmandu Valley, Nepal

    Get PDF
    In Nepal, children with low vision attend specialized schools for students who are totally blind and are treated as if they were totally blind. This study identified children with low vision and provided low vision devices to them. Of the 22% of the students in the school who had low vision, 78.5% benefited from the devices. Proper devices and counseling improved the quality of life of a significant number of these students. ©2008 AFB, All Rights Reserved

    Formation of diluted III–V nitride thin films by N ion implantation

    Get PDF
    iluted III–Nₓ–V₁ˍₓ alloys were successfully synthesized by nitrogen implantation into GaAs,InP, and AlyGa1−yAs. In all three cases the fundamental band-gap energy for the ion beam synthesized III–Nₓ–V₁ˍₓ alloys was found to decrease with increasing N implantation dose in a manner similar to that observed in epitaxially grownGaNₓAs1−x and InNₓP₁ˍₓalloys. In GaNₓAs₁ˍₓ the highest value of x (fraction of “active” substitutional N on As sublattice) achieved was 0.006. It was observed that NAs is thermally unstable at temperatures higher than 850 °C. The highest value of x achieved in InNₓP₁ˍₓ was higher, 0.012, and the NP was found to be stable to at least 850 °C. In addition, the N activation efficiency in implantedInNₓP₁ˍₓ was at least a factor of 2 higher than that in GaNₓAs₁ˍₓ under similar processing conditions. AlyGa1−yNₓAs₁ˍₓ had not been made previously by epitaxial techniques. N implantation was successful in producing AlyGa1−yNₓAs₁ˍₓalloys. Notably, the band gap of these alloys remains direct, even above the value of y (y>0.44) where the band gap of the host material is indirect.This work was supported by the ‘‘Photovoltaic Materials Focus Area’’ in the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences under U.S. Department of Energy Contract No. DE-ACO3-76SF00098. The work at UCSD was partially supported by Midwest Research Institute under subcontractor No. AAD-9-18668-7 from NREL

    Line Broadening and Decoherence of Electron Spins in Phosphorus-Doped Silicon Due to Environmental 29^Si Nuclear Spins

    Full text link
    Phosphorus-doped silicon single crystals with 0.19 % <= f <= 99.2 %, where f is the concentration of 29^Si isotopes, are measured at 8 K using a pulsed electron spin resonance technique, thereby the effect of environmental 29^Si nuclear spins on the donor electron spin is systematically studied. The linewidth as a function of f shows a good agreement with theoretical analysis. We also report the phase memory time T_M of the donor electron spin dependent on both f and the crystal axis relative to the external magnetic field.Comment: 5 pages, 4 figure

    High fidelity quantum memory via dynamical decoupling: theory and experiment

    Full text link
    Quantum information processing requires overcoming decoherence---the loss of "quantumness" due to the inevitable interaction between the quantum system and its environment. One approach towards a solution is quantum dynamical decoupling---a method employing strong and frequent pulses applied to the qubits. Here we report on the first experimental test of the concatenated dynamical decoupling (CDD) scheme, which invokes recursively constructed pulse sequences. Using nuclear magnetic resonance, we demonstrate a near order of magnitude improvement in the decay time of stored quantum states. In conjunction with recent results on high fidelity quantum gates using CDD, our results suggest that quantum dynamical decoupling should be used as a first layer of defense against decoherence in quantum information processing implementations, and can be a stand-alone solution in the right parameter regime.Comment: 6 pages, 3 figures. Published version. This paper was initially entitled "Quantum gates via concatenated dynamical decoupling: theory and experiment", by Jacob R. West, Daniel A. Lidar, Bryan H. Fong, Mark F. Gyure, Xinhua Peng, and Dieter Suter. That original version split into two papers: http://arxiv.org/abs/1012.3433 (theory only) and the current pape

    Host isotope mass effects on the hyperfine interaction of group-V donors in silicon

    Full text link
    The effects of host isotope mass on the hyperfine interaction of group-V donors in silicon are revealed by pulsed electron nuclear double resonance (ENDOR) spectroscopy of isotopically engineered Si single crystals. Each of the hyperfine-split P-31, As-75, Sb-121, Sb-123, and Bi-209 ENDOR lines splits further into multiple components, whose relative intensities accurately match the statistical likelihood of the nine possible average Si masses in the four nearest-neighbor sites due to random occupation by the three stable isotopes Si-28, Si-29, and Si-30. Further investigation with P-31 donors shows that the resolved ENDOR components shift linearly with the bulk-averaged Si mass.Comment: 5 pages, 4 figures, 1 tabl

    Application of Pulsed Field Gel Electrophoresis to Determine Îł-ray-induced Double-strand Breaks in Yeast Chromosomal Molecules

    Get PDF
    The frequency of DNA double-strand breaks (dsb) was determined in yeast cells exposed to Îł-rays under anoxic conditions. Genomic DNA of treated cells was separated by pulsed field gel electrophoresis, and two different approaches for the evaluation of the gels were employed: (1) The DNA mass distribution profile obtained by electrophoresis was compared to computed profiles, and the number of DSB per unit length was then derived in terms of a fitting procedure; (2) hybridization of selected chromosomes was performed, and a comparison of the hybridization signals in treated and untreated samples was then used to derive the frequency of dsb
    • 

    corecore