29 research outputs found
Processing line for industrial radiation-thermal synthesis of doped lithium ferrite powders
The paper considers the issues of industrial production of doped lithium ferrite powders by radiation-thermal method. A technological scheme of the processing line is suggested. The radiation-thermal technological scheme enables production of powders with technical characteristics close to the required ones under relatively low temperature annealing conditions without intermediate mixing. The optimal conditions of the radiation-thermal synthesis are achieved isothermally under irradiation by the electron beam with energy of 2.5 MeV in the temperature range of 700-750 Β°Π‘ within~ 120 min
Detection and defect correction of operating process
The article is devoted to the current problem of enterprise competitiveness rise in hard and competitive terms of business environment. The importance of modern equipment for detection of defects and their correction is explained. Production of chipboard is used as an object of research. Short description and main results of estimation efficiency of innovative solutions of enterprises are considered
Steady operation of the electric drive of pipeline armature in the emergency situation at low ambient temperatures
This scientific work is devoted to the study of the electric drive operation of pipeline armature at low ambient temperatures. Hit of moisture into reducer and rare inclusions in operation of locking regulator are led to curdling lubricant that causes the increased wear of mechanical knots. There is a probability of freezing mechanical components; it leads to emergency situations. The problem of improving working efficiency of the electric drive of shut-off regulating armature at low ambient temperatures of the environment is solved in this work. A simulation model of the GUSAR electric drive was developed to solve this problem. Studies of the simulation model show the need to limit the torque increase rate on a drive motor shaft. The algorithm of setting of PI speed controller to obtain acceptable transient processes is suggested. Recommendations for the use of the algorithm in the microprocessor control system of electric drive are proposed. It is shown that the electric drive operation algorithm with torque increasing limitation on the motor shaft will be smoothly working off the perturbing actions that occur in pipeline armature
Pneumatic device of the preload and dynamic loads balancing to reduce the intensity of thermal processes in the metal cutting process
Improved reliability of the technological system "machine-tool-instrument-detail" is an important current task. Backlashes and insufficient stiffness of technological system lead to intensive wear of the cutting tool, increasing the heat in the cutting zone. Due to high temperature in the thin surface layers of the workpiece and tool thermal processes may occur which are similar to release and can cause the structural changes of the material. The current article presents the final design of the device which has been developed to reduce the intensity of thermal processes in metal cutting
Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air
A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50Β° C and powder consumption of 0.5 g/l of air. The resulting material contained 6β18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material β CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals
Cognitive and sociocultural aspects of robotized technology: innovative processes of adaptation
The paper dwells upon interaction between socio-cultural phenomena and cognitive characteristics of robotized technology. The interdisciplinary approach was employed in order to cast light on the manifold and multilevel identity of scientific advance in terms of robotized technology within the mental realm. Analyzing robotized technology from the viewpoint of its significance for the modern society is one of the upcoming trends in the contemporary scientific realm. The robots under production are capable of interacting with people; this results in a growing necessity for the studies on social status of robotized technological items. Socio-cultural aspect of cognitive robotized technology is reflected in the fact that the nature becomes 'aware' of itself via human brain, a human being tends to strives for perfection in their intellectual and moral dimensions
Production of {\pi}+ and K+ mesons in argon-nucleus interactions at 3.2 AGeV
First physics results of the BM@N experiment at the Nuclotron/NICA complex
are presented on {\pi}+ and K+ meson production in interactions of an argon
beam with fixed targets of C, Al, Cu, Sn and Pb at 3.2 AGeV. Transverse
momentum distributions, rapidity spectra and multiplicities of {\pi}+ and K+
mesons are measured. The results are compared with predictions of theoretical
models and with other measurements at lower energies.Comment: 29 pages, 20 figure
The BM@N spectrometer at the NICA accelerator complex
BM@N (Baryonic Matter at Nuclotron) is the first experiment operating and
taking data at the Nuclotron/NICA ion-accelerating complex.The aim of the BM@N
experiment is to study interactions of relativistic heavy-ion beams with fixed
targets. We present a technical description of the BM@N spectrometer including
all its subsystems.Comment: 34 pages, 47 figures, 6 table