656 research outputs found
A new stellar mixing process operating below shell convection zones following off-center ignition
During most stages of stellar evolution the nuclear burning of lighter to
heavier elements results in a radial composition profile which is stabilizing
against buoyant acceleration, with light material residing above heavier
material. However, under some circumstances, such as off-center ignition, the
composition profile resulting from nuclear burning can be destabilizing, and
characterized by an outwardly increasing mean molecular weight. The potential
for instabilities under these circumstances, and the consequences that they may
have on stellar structural evolution, remain largely unexplored. In this paper
we study the development and evolution of instabilities associated with
unstable composition gradients in regions which are initially stable according
to linear Schwarzschild and Ledoux criteria. In particular, we explore the
mixing taking place under various conditions with multi-dimensional
hydrodynamic convection models based on stellar evolutionary calculations of
the core helium flash in a 1.25 \Msun star, the core carbon flash in a
9.3\,\Msun star, and of oxygen shell burning in a star with a mass of
23\,\Msun. The results of our simulations reveal a mixing process associated
with regions having outwardly increasing mean molecular weight that reside
below convection zones. The mixing is not due to overshooting from the
convection zone, nor is it due directly to thermohaline mixing which operates
on a timescale several orders of magnitude larger than the simulated flows.
Instead, the mixing appears to be due to the presence of a wave field induced
in the stable layers residing beneath the convection zone which enhances the
mixing rate by many orders of magnitude and allows a thermohaline type mixing
process to operate on a dynamical, rather than thermal, timescale. We discuss
our results in terms of related laboratory phenomena and associated theoretical
developments.Comment: accepted for publication in Astrophysical Journal, 9 pages, 8 figure
Multiwavelength analysis of the young open cluster NGC 2362
We present a multiwavelength analysis of the young open cluster NGC 2362.
UBVRcIc CCD photometric observations, together with available data in the
Chandra data base, near infrared data from the Two Micron All Sky Survey
(2MASS), and recently published Halpha spectroscopy were used to get
information about the evolutionary stage of the cluster and the main physical
properties of its stellar content. Cluster membership is estimated for every
individual star by means of ZAMS and isochrone fitting. The cluster is
confirmed to host a richly populated pre-main sequence (PMS), and to contain a
large amount of X-ray emitting stars, which reach from the PMS members of GK
spectral type, up to the most luminous OB type main sequence (MS) members. The
PMS cluster members show no significant age spread, and the comparison to both
PMS and post-MS isochrones suggests a younger age for the more massive MS than
for lower mass PMS members. The analysis allows to asses the validity of
currently used pre-main sequence evolutionary models, and supports the
suggestion of a well defined positive correlation of the X-ray emission from
PMS stars with their bolometric luminosity. Clear differences are found on the
other hand, between the X-ray activity properties of MS and PMS cluster
members, both in the relation between X-ray luminosity and bolometric
luminosity, and in spectral properties as well.Comment: 1 gzipped file: 1 tex file with 9 pages text. 5 ps files with
figures. Submitted to Astrophysical Journa
Discovery of the Pre-Main Sequence Population of the Stellar Association LH 95 in the Large Magellanic Cloud with Hubble Space Telescope ACS Observations
We report the discovery of an extraordinary number of pre-main sequence (PMS)
stars in the vicinity of the stellar association LH 95 in the Large Magellanic
Cloud (LMC). Using the {\em Advanced Camera for Surveys} on-board the {\em
Hubble} Space Telescope in wide-field mode we obtained deep high-resolution
imaging of the main body of the association and of a nearby representative LMC
background field. These observations allowed us to construct the
color-magnitude diagram (CMD) of the association in unprecedented detail, and
to decontaminate the CMD for the average LMC stellar population. The most
significant result is the direct detection of a substantial population of PMS
stars and their clustering properties with respect to the distribution of the
higher mass members of the association. Although LH 95 represents a rather
modest star forming region, our photometry, with a detection limit \lsim 28
mag, reveals in its vicinity more than 2,500 PMS stars with masses down to
M{\solar}. Our observations offer, thus, a new perspective of a
typical LMC association: The stellar content of LH 95 is found to extend from
bright OB stars to faint red PMS stars, suggesting a fully populated Initial
Mass Function (IMF) from the massive blue giants down to the sub-solar mass
regime.Comment: Accepted for Publication in ApJ Letters - 4 Pages ApJ paper format -
3 figures in low-resolution/grayscal
A double-lined spectroscopic orbit for the young star HD 34700
We report high-resolution spectroscopic observations of the young star HD
34700, which confirm it to be a double-lined spectroscopic binary. We derive an
accurate orbital solution with a period of 23.4877 +/- 0.0013 days and an
eccentricity of e = 0.2501 +/- 0.0068. The stars are found to be of similar
mass (M2/M1 = 0.987 +/- 0.014) and luminosity. We derive also the effective
temperatures (5900 K and 5800 K) and projected rotational velocities (28 km/s
and 22 km/s) of the components. These values of v sin i are much higher than
expected for main-sequence stars of similar spectral type (G0), and are not due
to tidal synchronization. We discuss also the indicators of youth available for
the object. Although there is considerable evidence that the system is young
--strong infrared excess, X-ray emission, Li I 6708 absorption (0.17 Angstroms
equivalent width), H alpha emission (0.6 Angstroms), rapid rotation-- the
precise age cannot yet be established because the distance is unknown.Comment: 17 pages, including 2 figures and 2 tables. Accepted for publication
in AJ, to appear in February 200
The Initial Mass Function of the Stellar Association NGC 602 in the Small Magellanic Cloud with Hubble Space Telescope ACS Observations
We present our photometric study of the stellar association NGC 602 in the
wing of the Small Magellanic Cloud (SMC). The data were taken in the filters
F555W and F814W using the Advanced Camera for Surveys (ACS) on-board the Hubble
Space Telescope (HST). Photometry was performed using the ACS module of the
stellar photometry package DOLPHOT. We detected more than 5,500 stars with a
magnitude range of 14 \lsim m_{555} \lsim 28 mag. Three prominent stellar
concentrations are identified with star counts in the observed field, the
association NGC 602 itself, and two clusters, one of them not being currently
in any known catalog. The Color-Magnitude Diagrams (CMDs) of both clusters show
features typical for young open clusters, while that of the association reveals
bright main sequence (MS) and faint pre-main sequence (PMS) stars as the
members of the system. We construct the initial mass spectrum (IMS) of the
association by applying an age-independent method of counting the PMS stars
within evolutionary tracks, while for the bright MS stars we transform their
magnitudes to masses with the use of mass-luminosity relations. The IMS of NGC
602 is found to be well represented by a single-power law, corresponding to an
Initial Mass Function (IMF) of slope \Gamma\approx -1.2 for 1 \lsim M/M{\solar}
\lsim 45. This indicates that the shape of the IMF of a star forming system in
the SMC for stars with masses higher than 1 M{\solar} seems to be quite similar
to the field IMF in the solar neighborhood.Comment: Accepted for publication in ApJ, 13 pages, 14 figures, emulateapj.cls
LaTeX style, full resolution version available on
http://www.astro.uni-bonn.de/~dgoulier/Science/NGC602/ms.pd
Turbulent Flow-Driven Molecular Cloud Formation: A Solution to the Post-T Tauri Problem?
We suggest that molecular clouds can be formed on short time scales by
compressions from large scale streams in the interstellar medium (ISM). In
particular, we argue that the Taurus-Auriga complex, with filaments of 10-20 pc
2-5 pc, most have been formed by H I flows in Myr,
explaining the absence of post-T Tauri stars in the region with ages Myr. Observations in the 21 cm line of the H I `halos' around the Taurus
molecular gas show many features (broad asymmetric profiles, velocity shifts of
H I relative to CO) predicted by our MHD numerical simulations, in which
large-scale H I streams collide to produce dense filamentary structures. This
rapid evolution is possible because the H I flows producing and disrupting the
cloud have much higher velocities (5-10 kms) than present in the molecular gas
resulting from the colliding flows. The simulations suggest that such flows can
occur from the global ISM turbulence without requiring a single triggering
event such as a SN explosion.Comment: 26 pages, 12 ps figures. Apj accepte
The Stellar Content of Obscured Galactic Giant HII Regions V: G333.1--0.4
We present high angular resolution near--infrared images of the obscured
Galactic Giant HII (GHII) region G333.1--0.4 in which we detect an OB star
cluster. For G333.1--0.4, we find OB stars and other massive objects in very
early evolutionary stages, possibly still accreting. We obtained --band
spectra of three stars; two show O type photospheric features, while the third
has no photospheric features but does show CO 2.3 m band--head emission.
This object is at least as hot as an early B type star based on its intrinsic
luminosity and is surrounded by a circumstellar disc/envelope which produces
near infrared excess emission. A number of other relatively bright cluster
members also display excess emission in the --band, indicative of
disks/envelopes around young massive stars. Based upon the O star photometry
and spectroscopy, the distance to the cluster is 2.6 0.4 kpc, similar to
a recently derived kinematic (near side) value. The slope of the --band
luminosity function is similar to those found in other young clusters. The mass
function slope is more uncertain, and we find - for stars with M M where the upper an lower limits are
calculated independently for different assumptions regarding the excess
emission of the individual massive stars. The number of Lyman continuum photons
derived from the contribution of all massive stars in the cluster is 0.2
. The
integrated cluster mass is 1.0
.Comment: 31 pages, including 12 figures and 3 tables. Accepted for publication
in the A
No Fossil Disk in the T Tauri Multiple System V773 Tau
We present new multi-epoch near-infrared and optical high-angular images of
the V773 Tau pre-main sequence triple system, a weak-line T Tauri (WTTS) system
in which the presence of an evolved, ``fossil'' protoplanetary disk has been
inferred on the basis of a significant infrared excess. Our images reveal a
fourth object bound to the system, V773 Tau D. While it is much fainter than
all other components at 2 micron, it is the brightest source in the system at
4.7 micron. We also present medium-resolution K band adaptive optics
spectroscopy of this object, which is featureless with the exception of a weak
Br gamma emission line. Based on this spectrum and on the spectral energy
distribution of the system, we show that V773 Tau D is another member of the
small class of ``infrared companions'' (IRCs) to T Tauri stars. It is the least
luminous, and probably the least massive, component of the system, as opposed
to most other IRCs, which suggests that numerous low-luminosity IRCs such as
V773 Tau D may still remain to be discovered. Furthermore, it is the source of
the strong IR excess in the system. We therefore reject the interpretation of
this excess as the signature of a fossil (or ``passive'') disk and further
suggest that these systems may be much less frequent than previously thought.
We further show that V773 Tau C is a variable classical T Tauri star (CTTS)
and that its motion provides a well constrained orbital model. We show that
V773 Tau D can be dynamically stable within this quadruple system if its orbit
is highly inclined. Finally, V773 Tau is the first multiple system to display
such a variety of evolutionary states (WTTS, CTTS, IRC), which may be the
consequence of the strong star-star interactions in this compact quadruple
system.Comment: Accepted for publication in Astrophysical Journal, 29 pages, 2
tables, 5 figure
NGC 346 in the Small Magellanic Cloud. III. Recent Star Formation and Stellar Clustering Properties in the Bright HII Region N 66
In the third part of our photometric study of the star-forming region NGC
346/N~66 and its surrounding field in the Small Magellanic Cloud (SMC), we
focus on the large number of low-mass pre-main sequence (PMS) stars revealed by
the Hubble Space Telescope Observations with the Advanced Camera for Surveys.
We investigate the origin of the observed broadening of the pre-main sequence
population in the , CMD. The most likely explanations are either the
presence of differential reddening or an age spread among the young stars.
Assuming the latter, simulations indicate that we cannot exclude the
possibility that stars in NGC 346 might have formed in two distinct events
occurring about 10 and 5 Myr ago, respectively. We find that the PMS stars are
not homogeneously distributed across NGC 346, but instead are grouped in at
least five different clusters. On spatial scales from 0.8 to 8 (0.24 to
2.4 pc at the distance of the SMC) the clustering of the PMS stars as computed
by a two-point angular correlation function is self-similar with a power law
slope . The clustering properties are quite similar to
Milky Way star forming regions like Orion OB or Oph. Thus molecular
cloud fragmentation in the SMC seems to proceed on the same spatial scales as
in the Milky Way. This is remarkable given the differences in metallicity and
hence dust content between SMC and Milky Way star forming regions.Comment: Accepted for publication in ApJ. 16 pages, 13 (low-resolution)
figures, emulateapj.cls LaTeX styl
The Smallest Mass Ratio Young Star Spectroscopic Binaries
Using high resolution near-infrared spectroscopy with the Keck telescope, we
have detected the radial velocity signatures of the cool secondary components
in four optically identified pre-main-sequence, single-lined spectroscopic
binaries. All are weak-lined T Tauri stars with well-defined center of mass
velocities. The mass ratio for one young binary, NTTS 160905-1859, is M2/M1 =
0.18+/-0.01, the smallest yet measured dynamically for a pre-main-sequence
spectroscopic binary. These new results demonstrate the power of infrared
spectroscopy for the dynamical identification of cool secondaries. Visible
light spectroscopy, to date, has not revealed any pre-main-sequence secondary
stars with masses <0.5 M_sun, while two of the young systems reported here are
in that range. We compare our targets with a compilation of the published young
double-lined spectroscopic binaries and discuss our unique contribution to this
sample.Comment: Accepted for publication in the April, 2002, ApJ; 6 figure
- âŠ