17 research outputs found

    Physical activity and thrombophilic risk in a short series

    Get PDF
    The role of influence on protein C anticoagulant system and PC deficiency-related thrombophilic risk due to strenuous physical exercise is still under discussion. To investigate the modification of the protein C anticoagulant pathway after vigorous exercise, we measured ProC® Global assay, a protein C activity dependent clotting time, in 20 healthy subjects before and immediately after maximal treadmill exercise, and at 5, 15, 30 and 60 min in the recovery phase. The most evident change was a shortening of ProC® Global clotting time from the average basal value of 123 sec to 84 sec at 30 min in post-exercise. Our study shows that the coagulation unbalance observed after strenuous exercise and with no consequence in healthy individuals with normal PC level, could increase the thrombophilic risk in silent carriers of significant defects of the protein C system and occasionally trigger an episode of deep vein thrombosis

    PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice

    Get PDF
    Helper-dependent adenoviral (HD-Ad) vectors have great potential for gene therapy applications; however, their administration induces acute toxicity that impairs safe clinical applications. We previously observed that PEGylation of HD-Ad vectors strongly reduces the acute response in murine and primate models. To evaluate whether PEGylated HD-Ad vectors combine reduced toxicity with the correction of pathological phenotypes, we administered an HD-Ad vector expressing the human apolipoprotein A-I (hApoA-I) to low-density lipoprotein (LDL)-receptor-deficient mice (a model for familial hypercholesterolemia) fed a high-cholesterol diet. Mice were treated with high doses of HD-Ad-expressing apo A-I or its PEGylated version. Twelve weeks later, LDL levels were lower and high-density lipoprotein (HDL) levels higher in mice treated with either of the vectors than in untreated mice. After terminal killing, the areas of atherosclerotic plaques were much smaller in the vector-treated mice than in the control animals. Moreover, the increase in pro-inflammatory cytokines was lower and consequently the toxicity profile better in mice treated with PEGylated vector than in mice treated with the unmodified vector. This finding indicates that the reduction in toxicity resulting from PEGylation of HD-Ad vectors does not impair the correction of pathological phenotypes. It also supports the clinical potential of these vectors for the correction of genetic diseases

    Childhood obesity: An overview of laboratory medicine, exercise and microbiome

    Get PDF
    In the last few years, a significant increase of childhood obesity incidence unequally distributed within countries and population groups has been observed, thus representing an important public health problem associated with several health and social consequences. Obese children have more than a 50% probability of becoming obese adults, and to develop pathologies typical of obese adults, that include type 2-diabetes, dyslipidemia and hypertension. Also environmental factors, such as reduced physical activity and increased sedentary activities, may also result in increased caloric intake and/or decreased caloric expenditure. In the present review, we aimed to identify and describe a specific panel of parameters in order to evaluate and characterize the childhood obesity status useful in setting up a preventive diagnostic approach directed at improving health-related behaviors and identifying predisposing risk factors. An early identification of risk factors for childhood obesity could definitely help in setting up adequate and specific clinical treatments

    A new synthetic protein, TAT-RH, inhibits tumor growth through the regulation of NFkappaB activity

    No full text
    Background: Based on its role in angiogenesis and apoptosis, the inhibition of NFκB activity is considered an effective treatment for cancer, hampered by the lack of selective and safe inhibitors. We recently demonstrated that the RH domain of GRK5 (GRK5-RH) inhibits NFκB, thus we evaluated its effects on cancer growth. Methods: The role of GRK5-RH on tumor growth was assessed in a human cancer cell line (KAT- 4). RH overexpression was induced by adenovirus mediated gene transfer; alternatively we administered a synthetic protein reproducing the RH domain of GRK5 (TAT-RH), actively transported into the cells. Results: In vitro, adenovirus mediated GRK5-RH overexpression (AdGRK5-NT) in human tumor cells (KAT-4) induces IκB accumulation and inhibits NFκB transcriptional activity leading to apoptotic events. In BALB/c nude mice harboring KAT-4 induced neoplasias, intra-tumor delivery of AdGRK5-NT reduces in a dose-dependent fashion tumor growth, with the highest doses completely inhibiting it. This phenomenon is paralleled by a decrease of NFκB activity, an increase of IκB levels and apoptotic events. To move towards a pharmacological setup, we synthesized the TAT-RH protein. In cultured KAT-4 cells, different dosages of TAT-RH reduced cell survival and increased apoptosis. In BALB/c mice, the anti-proliferative effects of TAT-RH appear to be dosedependent and highest dose completely inhibits tumor growth. Conclusion: Our data suggest that GRK5-RH inhibition of NFκB is a novel and effective antitumoral strategy and TAT-RH could be an useful tool in the fighting of cancer

    Identification of a Novel Transcription Factor Required for Osteogenic Differentiation of Mesenchymal Stem Cells

    No full text
    Osteogenic differentiation is a complex and still poorly understood biological process regulated by intrinsic cellular signals and extrinsic microenvironmental cues. Following appropriate stimuli, mesenchymal stem cells (MSCs) differentiate into osteoblasts through a tightly regulated multistep process driven by several transcription factors and characterized by the expression of a number of bone-specific proteins. In this study, we describe a novel transcription factor that we named osteoblast inducer (ObI)-1, involved in MSC differentiation toward the osteogenic lineage. ObI-1 encodes for a nuclear protein subjected to proteasomal degradation and expressed during osteoblast differentiation both in a murine multipotent mesenchymal cell line (W20-17) and in primary murine MSCs. RNA interference-mediated knockdown of ObI-1 expression significantly impairs osteoblast differentiation and matrix mineralization with reduced expression of the osteogenic markers, Runt-related transcription factor 2 (Runx2) and osteopontin. Conversely, ObI-1 overexpression enhances osteogenic differentiation and bone-specific markers expression. ObI-1 stimulates bone morphogenetic protein (BMP)-4 expression and the consequent activation of the Smad pathway; treatment with a BMP receptor type I antagonist completely abolishes ObI-1-mediated stimulation of osteogenic differentiation. Collectively, our findings suggest that ObI-1 modulates osteogenic differentiation, at least in part, through the BMP signaling pathway, increasing Runx2 activation and leading to osteoblast commitment and maturation

    Evaluation of the antiproliferative effect of Bifidobacterium longum BB-536 in solid tumor cell lines, co-cultured with murine splenocytes

    No full text
    Introduction: In the last decade, cancer immunotherapy has delivered impressive results in clinical settings. However, its efficacy has not been consistent probably because of several environmental and genetic factors influencing the outcome. Many studies have indicated that intestinal microbiota could affect the outcome of immune checkpoint inhibitors-based immunotherapy, both in animal models and patients. In particular, the Bifidobacterium genus seems to have a role as a positive regulator of in vivo antitumor immunity by promoting proinflammatory signals in innate immune cells. According to the considerable evidence that demonstrated its crucial role in the carcinogenesis and, overall, in the response to immunotherapy, we decided to use a commercial probiotic and grow its principal strain, the Bifidobacterium longum BB-536, in order to test its capability to affect antitumoral immune responses. Methods: Prior to in vivo studies, we carried out a feasibility evaluation study to test in vitro, antitumoral effects of the isolated probiotic strain. Tumor cell viability was used as parameter to determine Bifidobacterium longum BB-536 anti-proliferative ability before or after heat inactivation. Results: Interestingly, we found that B. longum inhibits cell growth, both in mouse melanoma B16-OVA and colorectal CT26 cells, showing a more pronounced effect on the latter ones. Conclusion: This preliminary evaluation of live and heat-inactivated probiotic in tumor cell lines indicates a potential cell growth inhibitory effect of these bacterial strains and encourage further studies in mouse models

    Non-canonical role of PDK1 as a negative regulator of apoptosis through macromolecular complexes assembly at the ER-mitochondria interface in oncogene-driven NSCLC

    No full text
    Here, we tested whether co-targeting of glucose metabolism and oncogene drivers may enhance tumor response to tyrosine kinase inhibitors (TKIs) in NSCLC. To this end, pyruvate dehy-drogenase kinase 1 (PDK1) was stably downregulated in oncogene-driven NSCLC cell lines exposed or not to TKIs. H1993 and H1975 cells were stably transfected with scrambled (shCTRL) or PDK1-targeted (shPDK1) shRNA and then treated with MET inhibitor crizotinib (1 µM), double mutant EGFRL858R/T790M inhibitor WZ4002 (1 µM) or vehicle for 48 h. The effects of PDK1 knockdown on glucose metabolism and apoptosis were evaluated in untreated and TKI-treated cells. PDK1 knockdown alone did not cause significant changes in glycolytic cascade, ATP production and glucose consumption, but it enhanced maximal respiration in shPDK1 cells when compared to controls. When combined with TKI treatment, PDK1 downregulation caused a strong enhancement of OXPHOS and a marked reduction in key glycolytic enzymes. Furthermore, increased levels of apoptotic markers were found in shPDK1 cells as compared to shCTRL cells after treatment with TKIs. Co-immunoprecipitation studies showed that PDK1 interacts with PKM2, Bcl-2 and Bcl-xL, forming macromolecular complexes at the ER–mitochondria interface. Our findings showed that downreg-ulation of PDK1 is able to potentiate the effects of TKIs through the disruption of macromolecular complexes involving PKM2, Bcl-2 and Bcl-xL

    Oncolytic Adenoviral Vector-Mediated Expression of an Anti-PD-L1-scFv Improves Anti-Tumoral Efficacy in a Melanoma Mouse Model

    No full text
    Oncolytic virotherapy is an emerging therapeutic approach based on replication-competent viruses able to selectively infect and destroy cancer cells, inducing the release of tumor-associated antigens and thereby recruiting immune cells with a subsequent increase in antitumoral immune response. To increase the anticancer activity, we engineered a specific oncolytic adenovirus expressing a single-chain variable fragment of an antibody against PD-L1 to combine blockage of PD-1/PD-L1 interaction with the antitumoral activity of Onc.Ad5. To assess its efficacy, we infected B16.OVA cells, a murine model of melanoma, with Ad5Δ24 -anti-PD-L1-scFv and then co-cultured them with C57BL/6J naïve splenocytes. We observed that the combinatorial treatments were significantly more effective in inducing cancer cell death. Furthermore, we assessed the efficacy of intratumoral administrations of Ad5Δ24-anti-PD-L1-scFv in C57BL/6J mice engrafted with B16.OVA and compared this treatment to that of the parental Ad5Δ24 or placebo. Treatment with the scFv-expressing Onc.Ad induced a marked reduction of tumor growth concerning the parental Onc.Ad. Additionally, the evaluation of the lymphocytic population infiltrating the treated tumor reveals a favorable immune profile with an enhancement of the CD8+ population. These data suggest that Onc.Ad-mediated expression of immune checkpoint inhibitors increases oncolytic virotherapy efficacy and could be an effective and promising tool for cancer treatments, opening a new way into cancer therapy

    Helper-dependent adenovirus-mediated gene transfer of a secreted LDL receptor/transferrin chimeric protein reduces aortic atherosclerosis in LDL receptor-deficient mice

    No full text
    Familial hypercholesterolemia (FH) is a genetic hyperlipidemia characterized by elevated concentrations of plasma LDL cholesterol. Statins are not always effective for the treatment of FH patients; unresponsive patients have poor prognosis and rely on LDL apheresis. In the past, we developed safe and effective gene therapy strategies for the expression of anti-atherogenic proteins using PEGylated helper-dependent adenoviral (HD-Ad) vectors. We recently developed a HD-Ad vector for the expression of the soluble form of the extracellular portion of the human LDL receptor (LDLR) fused with a rabbit transferrin dimer (LDLR-TF). We evaluated the efficacy of the LDLR-TF chimeric protein in CHOLDLA7, a cell line lacking LDLR expression, restoring the ability to uptake LDL. Subsequently, we administered intravenously 1 × 10E13 vp/kg of this vector in LDLR-deficient mice and observed amelioration of lipid profile and reduction of aortic atherosclerosis. Finally, we studied LDL distribution after HD-Ad vector-mediated expression of LDLR-TF in LDLR-deficient mice and found LDL accumulation in liver, and in heart and intestine. These results support the possibility of lowering LDL-C levels and reducing aortic atherosclerosis using a secreted therapeutic transgene; the present strategy potentially can be modified and adapted to non-systemic gene transfer with expression of the secreted chimeric protein in muscle or other tissues. Intramuscular or local administration strategies could improve the safety profile of this strategy and facilitate applicability
    corecore