12 research outputs found

    Characteristics and evolution of satellite DNA sequences in bivalve mollusks

    No full text
    Mollusks of the class Bivalvia have attracted attention because of the extraordinarily important roles they play in marine ecosystems and in aquaculture. Data obtained from genetic studies performed on these species are accumulating rapidly, particularly in recent years when several genomic and transcriptomic studies have been carried out, or are in progress. Despite this, knowledge concerning satellite DNAs, tandemly repeated non-coding genomic sequences important for comprehending genomic architecture and function as a whole, is fragmentary and limited to a relatively small number of mollusk species. Here, we present an overview of the studied satellite DNAs and their characteristics in bivalve mollusks, and discuss the implications of these results. In addition to the general features common for these sequences, bivalve satellite DNAs show some distinct specificities which may be intriguing for the broad scientific community involved in unravelling repetitive genome components. The most striking are low genomic contribution, diversity of sequence families, extremely old ancestry, links with mobile elements, and unusual methylation patterns. Although current results were obtained in classical studies on individual species and their satellite DNA families, it can be postulated that they defined fundamental characteristics of these sequences in bivalve species generally, and will be further explored in detail by future satellitome and other high-throughput studies

    Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements

    Get PDF
    Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE’s central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome

    RUDI, a short interspersed element of the V-SINE superfamily widespread in molluscan genomes

    No full text
    Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution

    Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks

    No full text
    The ubiquity of satellite DNA (satDNA) sequences has raised much controversy over the abundance of divergent monomer variants and the long-time nucleotide sequence stability observed for many satDNA families. In this work, we describe the satDNA BIV160, characterized in nine species of the three main bivalve clades (Protobranchia, Pteriomorphia and Heteroconchia). BIV160 monomers are similar in repeat size and nucleotide sequence to satDNAs described earlier in oysters and in the clam Donax trunculus. The broad distribution of BIV160 satDNA indicates that similar variants existed in the ancestral bivalve species that lived about 540 million years ago; this makes BIV160 the most ancient satDNA described so far. In the species examined, monomer variants are distributed in quite a complex pattern. This pattern includes (i) species characterized by a specific group of variants, (ii) species that share distinct group(s) of variants and (iii) species with both specific and shared types. The evolutionary scenario suggested by these data reconciles sequence uniformity in homogenization-maintained satDNA arrays with the genomic richness of divergent monomer variants formed by diversification of the same ancestral satDNA sequence. Diversified repeats can continue to evolve in a non-concerted manner and behave as independent amplification-contraction units in the framework of a \u2018library of satDNA variants\u2019 representing a permanent source of monomers that can be amplified into novel homogeneous satDNA arrays. On the whole, diversification of satDNA monomers and copy number fluctuations provide a highly dynamic genomic environment able to form and displace satDNA sequence variants rapidly in evolution

    A novel satellite DNA isolated in Pecten jacobaeus shows high sequence similarity among molluscs

    No full text
    The aim of this work is to investigate the sequence conservation and the evolution of repeated DNA in related species. Satellite DNA is a component of eukaryotic genomes and is made up of tandemly repeated sequences. These sequences are affected by high rates of mutation that lead to the occurrence of species-specific satellite DNAs, which are different in terms of both quantity and quality. In this work, a novel repetitive DNA family, named PjHhaI sat, is described in Pecten jacobaeus. The quantitative analyses revealed a different abundance of this element in the molluscan species investigated in agreement with the "library hypothesis" even if, in this case, at a high taxonomic level. In addition, the qualitative analysis demonstrated an astonishing sequence conservation not only among scallops but also in six other molluscan species belonging to three classes. These findings suggest that the PjHhaI sat may be considered as the most ancients of DNA described so far, which remained "frozen" during molluscan evolution. The widespread distribution of this sat DNA in molluscs as well as its long evolutionary preservation open up questions on the functional role of this element. A future challenge might be the identification of proteins or molecules which interact with the PjHhaI sat
    corecore