105 research outputs found

    A new type of resistive plate chamber: the multigap RPC

    Get PDF
    This paper describes the multigap resistive plate chamber (RPC). The goal is to obtain a much improved time resolution, keeping the advantages of the wide gap RPC in comparison with the conventional narrow gap RPC (smaller dynamic range and thus lower charge per avalanche which gives higher rate capability and lower power dissipation in the gas gap)

    Design, development and performance study of six-gap glass MRPC detectors

    Get PDF
    The Multigap Resistive Plate Chambers (MRPCs) are gas ionization detectors with multiple gas sub-gaps made of resistive electrodes. The high voltage (HV) is applied on the outer surfaces of outermost resistive plates only, while the interior plates are left electrically floating. The presence of multiple narrow sub--gaps with high electric field results in faster signals on the outer electrodes, thus improving the detector's time resolution. Due to their excellent performance and relatively low cost, the MRPC detector has found potential application in Time-of-Flight (TOF) systems. Here we present the design, fabrication, optimization of the operating parameters such as the HV, the gas mixture composition, and, performance of six--gap glass MRPC detectors of area 27cm Ă—\times 27 cm, which are developed in order to find application as trigger detectors, in TOF measurement etc. The design has been optimized with unique spacers and blockers to ensure a proper gas flow through the narrow sub-gaps, which are 250 ÎĽ\mum wide. The gas mixture consisting of R134A, Isobutane and SF6_{6}, and the fraction of each constituting gases has been optimized after studying the MRPC performance for a set of different concentrations. The counting efficiency of the MRPC is about 95% at 17.917.9 kV. At the same operating voltage, the time resolution, after correcting for the walk effect, is found to be about 219219 ps.Comment: Revised version with 15 pages, 14 figures, 2 tables. Accepted for publication in the European Physical Journal

    TOFtracker: combination of time-of-flight and high-accuracy bidimensional tracking in a single gaseous detector

    Get PDF
    A 5-gap timing RPC equipped with patterned electrodes coupled to both charge-sensitive and timing circuits yields a time accuracy of 77 ps along with a position accuracy of 38 ÎĽm. These results were obtained by calculating the straight-line fit residuals to the positions provided by a 3-layer telescope made out of identical detectors, detecting almost perpendicular cosmic-ray muons. The device may be useful for particle identification by time-of-flight, where simultaneous measurements of trajectory and time are necessary

    The MRPC-based ALICE Time-Of-Flight detector: status and performance

    Full text link
    The large Time-Of-Flight (TOF) array is one of the main detectors devoted to charged hadron identification in the mid-rapidity region of the ALICE experiment at the LHC. It allows separation among pions, kaons and protons up to a few GeV/c, covering the full azimuthal angle and -0.9 < eta < 0.9. The TOF exploits the innovative MRPC technology capable of an intrinsic time resolution better than 50 ps with an efficiency close to 100% and a large operational plateau; the full array consists of 1593 MRPCs covering a cylindrical surface of 141 m2. The TOF detector has been efficiently taking data since the first pp collisions recorded in ALICE in December 2009. In this report, the status of the TOF detector and the performance achieved for both pp and Pb--Pb collisions are described.Comment: 4 pages, 6 figure

    A new high-resolution TOF technology

    Get PDF
    In the framework of the ALICE collaboration we have recently studied the performance of multigap Resistive Plate Chambers operated in avalanche mode and at atmospheric pressure for time-of-flight measurements. The detector provided an overall (detector plus electronics) timing accuracy of 120 ps sigma at an efficiency of 98% for MIPs. The chambers had 4 gas gaps of 0.3 mm, each limited by a metallised ceramic plate and a glass plate, with an active dimension of 4'4cm2. The gas mixture contained C2H2F4+5%isobutane+10%SF6. A few percent of streamer discharges, each releasing about 20 pC, was tolerated without any noticeable inconvenience. This detector opens perspectives of affordable and reliable high granularity large area TOF detectors, with an efficiency and a time resolution comparable to existing scintillator-based TOF technology but with significantly, up to an order of magnitude, lower price per channel
    • …
    corecore