9,409 research outputs found

    Resonator-Aided Single-Atom Detection on a Microfabricated Chip

    Full text link
    We use an optical cavity to detect single atoms magnetically trapped on an atom chip. We implement the detection using both fluorescence into the cavity and reduction in cavity transmission due to the presence of atoms. In fluorescence, we register 2.0(2) photon counts per atom, which allows us to detect single atoms with 75% efficiency in 250 microseconds. In absorption, we measure transmission attenuation of 3.3(3)% per atom, which allows us to count small numbers of atoms with a resolution of about 1 atom.Comment: 4.1 pages, 5 figures, and submitted to Physical Review Letter

    Importance of an Astrophysical Perspective for Textbook Relativity

    Get PDF
    The importance of a teaching a clear definition of the ``observer'' in special relativity is highlighted using a simple astrophysical example from the exciting current research area of ``Gamma-Ray Burst'' astrophysics. The example shows that a source moving relativistically toward a single observer at rest exhibits a time ``contraction'' rather than a ``dilation'' because the light travel time between the source and observer decreases with time. Astrophysical applications of special relativity complement idealized examples with real applications and very effectively exemplify the role of a finite light travel time.Comment: 5 pages TeX, European Journal of Physics, in pres

    Decays in Quantum Hierarchical Models

    Full text link
    We study the dynamics of a simple model for quantum decay, where a single state is coupled to a set of discrete states, the pseudo continuum, each coupled to a real continuum of states. We find that for constant matrix elements between the single state and the pseudo continuum the decay occurs via one state in a certain region of the parameters, involving the Dicke and quantum Zeno effects. When the matrix elements are random several cases are identified. For a pseudo continuum with small bandwidth there are weakly damped oscillations in the probability to be in the initial single state. For intermediate bandwidth one finds mesoscopic fluctuations in the probability with amplitude inversely proportional to the square root of the volume of the pseudo continuum space. They last for a long time compared to the non-random case

    Current noise of a quantum dot p-i-n junction in a photonic crystal

    Full text link
    The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a three-dimensional photonic crystal is investigated. Radiative decay properties of quantum dot excitons can be obtained from the observation of the current noise. The characteristic of the photonic band gap is revealed in the current noise with discontinuous behavior. Applications of such a device in entanglement generation and emission of single photons are pointed out, and may be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005

    DC field induced enhancement and inhibition of spontaneous emission in a cavity

    Get PDF
    We demonstrate how spontaneous emission in a cavity can be controlled by the application of a dc field. The method is specially suitable for Rydberg atoms. We present a simple argument for the control of emission.Comment: 3-pages, 2figure. accepted in Phys. Rev.

    Surface-induced heating of cold polar molecules

    Full text link
    We study the rotational and vibrational heating of diatomic molecules placed near a surface at finite temperature on the basis of macroscopic quantum electrodynamics. The internal molecular evolution is governed by transition rates that depend on both temperature and position. Analytical and numerical methods are used to investigate the heating of several relevant molecules near various surfaces. We determine the critical distances at which the surface itself becomes the dominant source of heating and we investigate the transition between the long-range and short-range behaviour of the heating rates. A simple formula is presented that can be used to estimate the surface-induced heating rates of other molecules of interest. We also consider how the heating depends on the thickness and composition of the surface.Comment: 17 pages, 7 figure

    Inequalities for electron-field correlation functions

    Get PDF
    I show that there exists a class of inequalities between correlation functions of different orders of a chaotic electron field. These inequalities lead to the antibunching effect and are a consequence of the fact that electrons are fermions -- indistinguishable particles with antisymmetric states. The derivation of the inequalities is based on the known form of the correlation functions for the chaotic state and on the properties of matrices and determinants.Comment: 8 pages Latex2e, 2 eps figure

    A simple derivation of the electromagnetic field of an arbitrarily moving charge

    Full text link
    The expression for the electromagnetic field of a charge moving along an arbitrary trajectory is obtained in a direct, elegant, and Lorentz invariant manner without resorting to more complicated procedures such as differentiation of the Lienard-Wiechert potentials. The derivation uses arguments based on Lorentz invariance and a physically transparent expression originally due to J.J.Thomson for the field of a charge that experiences an impulsive acceleration.Comment: The following article has been accepted by the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp; 12 pages, 1 figur

    Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities

    Get PDF
    Small manufacturing-tolerant photonic crystal cavities are systematically designed using topology optimization to enhance the ratio between quality factor and mode volume, Q/V. For relaxed manufacturing tolerance, a cavity with bow-tie shape is obtained which confines light beyond the diffraction limit into a deep-subwavelength volume. Imposition of a small manufacturing tolerance still results in efficient designs, however, with diffraction-limited confinement. Inspired by numerical results, an elliptic ring grating cavity concept is extracted via geometric fitting. Numerical evaluations demonstrate that for small sizes, topology-optimized cavities enhance the Q/V-ratio by up to two orders of magnitude relative to standard L1 cavities and more than one order of magnitude relative to shape-optimized L1 cavities. An increase in cavity size can enhance the Q/V-ratio by an increase of the Q-factor without significant increase of V. Comparison between optimized and reference cavities illustrates that significant reduction of V requires big topological changes in the cavity

    Schiff moment of the Mercury nucleus and the proton dipole moment

    Full text link
    We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of 199^{199}Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound dp<5.4×1024e|d_p|< 5.4\times 10^{-24} e\cdotcm of the proton electric dipole moment.Comment: 4 pages, 2 figures, RevTex
    corecore