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Small manufacturing-tolerant photonic crystal cavities are systematically designed using topology optimiza-
tion to enhance the ratio between quality factor and mode volume, Q/V . For relaxed manufacturing tol-
erance, a cavity with bow-tie shape is obtained which confines light beyond the diffraction limit into a
deep-subwavelength volume. Imposition of a small manufacturing tolerance still results in efficient designs,
however, with diffraction-limited confinement. Inspired by numerical results, an elliptic ring grating cavity
concept is extracted via geometric fitting. Numerical evaluations demonstrate that for small sizes, topology-
optimized cavities enhance the Q/V -ratio by up to two orders of magnitude relative to standard L1 cavities
and more than one order of magnitude relative to shape-optimized L1 cavities. An increase in cavity size can
enhance the Q/V -ratio by an increase of the Q-factor without significant increase of V. Comparison between
optimized and reference cavities illustrates that significant reduction of V requires big topological changes in
the cavity.

PACS numbers: 42.60.Da
Keywords: Topology optimization, Photonic crystal cavity, Q/V -ratio

Strong light-matter interaction is key in a wide
range of photonic and optoelectronic applications, in-
cluding low threshold lasers1–4, sensors5, nonlinear op-
tics6, cavity quantum electrodynamics7, switching8,9 and
optomechanics10. In a cavity, the local photon density of
states (LDOS) scales proportionally to the Q/V -ratio.
An increase of LDOS in a cavity can lead to enhanced
spontaneous emission through the Purcell effect11. Both
photonic crystal (PhC) and plasmonic cavities have been
used to enhance the Purcell effect12–15. PhC cavities in-
crease the temporal confinement of light in a material,
as represented by their high Q, and are restricted by the
diffraction-limited spatial confinement of the light, mea-
sured in terms of V 12–14. Plasmonic cavities are capable
of increasing the spatial confinement beyond the diffrac-
tion limit, i.e. a low V can be attained, but are restricted
to small Q-values due to ohmic losses15. Miniaturization
of cavities with a high Q/V -ratio is in demand to en-
hance the light-matter interaction and reduce footprint
for compact integrated optical circuits.

Previously, many studies considered the design of di-
electric PhC cavites with enhanced Q while keeping a
diffraction-limited V ∼ (λ/n)3. Most of the studies fo-
cused on shape optimization (SO) by changing locations
or radii of air holes12–14 or using gradient-based geom-
etry projection methods16,17. These studies mainly fo-
cused on the conventional Ln or Hn cavities12–14,16,17 (n
is the number of filled holes in the PhC) and assumed
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very large in-plane dimensions, thus large footprint to
reduce in-plane loss. Recently, bow-tie shaped PhC cavi-
ties consisting of two tip-to-tip opposite components were
studied18–21. However the low V in these cavities is found
to be highly dependent on the features between the two
tips and hence extremely sensitive to manufacturing vari-
ations. 3D electron beam lithography (EBL) can fabri-
cate PhC structures with hole size down to about 40 nm22

and more recently the width of the bow-tie tip connec-
tion has been controlled to 12 nm with an error region of
±5 nm23. The fabrication accuracy puts a limit on the
resolution of the tip-region, which is important to take
into account when optimizing the design.

A density-based topology optimization (TO) method
was also employed to design finite-size PhC cavities with
enhanced Q/V -ratio24. Even though these optimized
PhC cavities exhibit stronly enhanced performance, they
are difficult to manufacture, as they contain prohibitively
small holes or holes with irregular patterns and sharp fea-
tures. Such features, largely determined by the underly-
ing mesh resolution, may also result in large modelling
errors and erroneous performance estimates. In this
study, we employ TO with manufacturing and length-
scale control to systematically design manufacturable 3D
PhC membrane cavities demonstrating an increase of the
Q/V -ratio by up to two orders of magnitude relative to
the standard L1 cavity contained within a square mem-
brane (see Fig. 1) and more than one order of magnitude
relative to a SO L1 cavity. In addition we investigate
the influence of the cavity size on the performance of the
optimized and reference cavities.

In the limit of a low-loss cavity, the Q/V -ratio is
only an approximation to the LDOS dominated by the
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FIG. 1. Illustration of a 3D PhC membrane and the cor-
responding computational domain. (a) 3D PhC membrane.
(b) Computational domain and boundary conditions.

contribution of a single resonant mode11,24. The Q/V -
ratio also describes the spontaneous emission enhance-
ment in the case where the emitter linewidth is narrower
than the cavity linewidth25. Hence, to directly target
the goal of achieving strong light-matter interaction, the
design goal is recast as the problem of maximizing a
frequency-averaged LDOS in the PhC membrane excited
by a dipole24. Using complex analysis it can be shown
that the LDOS may be calculated from the electric field
using a simple multi-pole evaluation instead of a full fre-
quency domain integration24. By introducing a squared
Lorentzian weight function this evaluation is reduced to a
single complex frequency evaluation of the electric field to
obtain the LDOS for a given material configuration. The
width of the weight function is gradually reduced over the
course of the optimization using a continuation scheme
to attain the final design for the targeted frequency24.

The cavity design and evaluation take offset in the
PhC membrane illustrated in Fig. 1 with a finite size
of t × t × h. The lattice constant is set to a = 440 nm
and the membrane thickness is set to h/a = 0.568. To
avoid a free floating membrane, a thin beam of width
80 nm is attached to the membrane as shown in the
top figure in Fig. 1(a). The dielectric material consti-
tuting the membrane is Indium Phosphide (InP) with a
refractive index of nInP = 3.17. The membrane is sur-
rounded by air (nair = 1) in all directions. Due to the
imposition of symmetry, only one eighth of the full do-
main is modelled with appropriate boundary conditions
as illustrated in Fig. 1(b), where ΓPMC and ΓPEC de-
note a perfect magnetic conductor (PMC, n ×H = 0)
and a perfect electric conductor (PEC, n × E = 0), re-
spectively. Absorbing boundary conditions, ΓABS, are
used to truncate the computational domain. The mem-
brane is excited by a dipole oriented along the x-direction
with an angular frequency, ω, modelled as a current

J(x) ∼ exe
iωtδ (x− x0). The total electric field is gov-

erned by

∇× 1

µ(x)
∇×E(x)− ε(x)ω2E(x) = iωJ(x) (1)

The finite element method is employed to solve the
scattering problem in Eq. (1). The solver is implemented
using the parallel sparse-matrix library PETSc26 and
the MUltifrontal Massively Parallel sparse direct Solver
(MUMPS)27

Based on the finite element discretization, a continuous
design variable, ρ ∈ [0, 1], is introduced in each element
to represent the material occupation in the element, and
the elemental refractive index is interpolated using28

n (ρ) = ρ (nInP − nAir) + nAir (2)

The design is iteratively updated using the gradient-
based optimization method, the Method of Moving
Asymptotes (MMA)29. The sensitivities of the objec-
tive and constraints are derived using adjoint sensitivity
analysis24,30. The software used to design cavities includ-
ing the finite element solver and MMA implementation,
is developed in-house.

In order to verify the performance of the optimized
cavities, they are imported into the commercial software
COMSOL Multiphysics 5.3 and evaluated using eigen-
value analysis31. The TO designs are extracted from the
FEM model by performing an isometric mapping and ex-
tracting the design for the isovalue of 0.5 in a post pro-
cessing step. This avoids stair-casing caused by the FEM
mesh of the optimization model which in turn would limit
accurate production.

As the first optimization case, we explore the possible
performance attained by TO cavities. Hence we design
a free floating PhC cavity with a size of t/a = 7 allow-
ing small and sharp features. The target wavelength is
λ = 1550 nm. As the initial guess for the optimization,
we use the reference L1 cavity shown in Fig. 1 consist-
ing of a hexagonal lattice with an air cylinder radius of
r = 0.26a without the beam in the center region. The
full PhC region is freely designable. The center of the
optimized cavity shown in Fig. 2(a) resembles a bow-tie
with a tip gap of 10 nm at the cavity center, which is
surrounded by a ring-like grating. As expected, small
features are observed in the optimized cavity, which are
likely impossible to fabricate accurately using present day
techniques.

To avoid the small features present in the previous de-
sign, a minimum length scale is introduced in the design
by applying a smoothened Heaviside projection filtering
technique to the design field32. The smallest feature that
can be fabricated is determined mainly by the EBL and
the semiconductor dry etching. As for our InP platform,
we found that it is preferable to keep this value larger
than 50 nm, otherwise, it will be difficult to make it
etched through. Here, a filter radius of 96 nm is em-
ployed, and a minimum length scale of 74 nm is enforced
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in both dielectric material and air using a geometrical
constraint approach33. Further, an 80 nm wide non-
designable region occupied by InP is introduced at the
center of the cavity, highlighted in the red in the opti-
mized design in Fig. 2(c), as the mode should be confined
inside the solid and not the air region. This has the ef-
fect that the size of the bow-tie region is changed. It is
seen that all the features in the design are smooth and
conform to the imposed length scale. The smoothened
bow-tie is surrounded by a smooth elliptic ring grating
as well as (less important) corner PhC-like regions.

To evaluate the performance of the optimized cavities,
we use the standard L1 cavity shown in Fig. 1(a) (also
shown in Fig. 2(e)) as a reference (L1 has an antinode of
‖E‖ at the cavity center while H0 has an node14). As an
additional reference we use a SO L1 cavity obtained using
a parameter sweep over the hole radius (r0) and lattice
constant (a0) of the air cylinders closest to the cavity
center, with r0 ∈ [0.22a, 0.32a] and a0 ∈ [220, 500] nm.
The SO L1 cavity with largest Q/V -ratio is obtained for
r0 = 0.23a and a0 = 460 nm and is shown in Fig. 2(g).

The normalized electric field norm of the resonant
modes in the optimized and reference cavities are shown
in the right column of Fig. 2. The performance of the cav-
ities is summarized in Table I. It is seen in Fig. 2(b) that
the cavity with small features exhibits an extremely high
field intensity at its center. Hence the optimized cavity
can concentrate light into a deep-subwavelength volume
with V = 0.00026 (λ/n)

3
. Here n is the refractive index

of the cavity material. The mode volume is calculated

using20 V =
∫
ε(x)|E(x)|2dx

max{ε(x)|E(x)|2} . Moreover the surrounding

grating structure adapted to the bow-tie shape further re-
duces field intensity away from the cavity center, which
leads to an increase in Q and a further reduced V for
the targeted resonant mode. Hence the optimized cavity
shown in Fig. 2(a) displays at least two order of magni-
tude lower V than the optimized H0 cavity by Wang et
al.17 and five time smaller V than the other proposed cav-
ities by Gondarenko and Lipson18. Further, it possesses
a high Q/V -ratio, which is at least two times that of the
highest Q/V -ratio obtained for a dielectric bow-tie cavity
proposed by Lu et al.19 and a hybrid photonic-plasmonic
nanobeam cavity at room temperature by Conteduca et
al34. It is known that V is mainly determined by the
size of the gap in the bow-tie shape at the cavity center.
The smaller the gap, the smaller V 19. In this work, the
numerical resolution and post processing limited the gap
size between two bow-tie tips to 10 nm.

The field intensity at the cavity center for the design
with restricted spatial resolution, shown in Fig. 2(c)-(d),
is lower than for the previous design shown in Fig. 2(a)-
(b). However, it is still significantly larger than the L1
and SO L1 cavities shown in Fig. 2(e)-(h). Moreover the
spatial confinement of the field pattern is smaller than in
the reference cavities. Hence, it is evident that the op-
timized cavity possesses a significantly enhanced Q/V -
ratio relative to both reference cavities (see Table I).
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FIG. 2. Left column: TO cavities and reference ones with
t/a = 7. Right column: Electric field norm ‖E‖ of corre-
sponding fundamental resonant modes. (a)-(b) TO 3D PhC
membrane cavity with small features. (c)-(d) TO 3D PhC
membrane cavity with a minimum length scale of 74 nm. (e)-
(f) L1 cavity. (g)-(h) SO L1 cavity.

However, the introduction of the non-design domain at
the cavity center and the enforcement of length scale pro-
hibits the appearance of small features, which in turn re-
stricts the optimized design from attaining a V below the
diffraction limit of V ∼ 0.1 (λ/n)

3
. It is observed that

the TO cavity with small features confines light in the air
regions while the one with imposed length scale confines
light inside the InP. The non-design domain guarantees
the confinement of light in the material region at the
cavity center, which is important for applications3.

Compared to the standard L1 cavity, the SO L1 cav-
ity enhances the Q/V -ratio by an increased Q with a
small increase in V. The TO cavity with imposed length
scale enhances the Q/V -ratio by both increased Q and
reduced V and displays a Q/V -ratio at least 18 times
higher than both references. The finite size of the PhC
membrane limits the Q-value due to in-plane loss. The
elliptic Bragg gratings created in the TO cavities reduces
in-plane loss hereby facilitating a significant increase in
Q.

Next we study the effect of the outer dimensions of the
PhC cavity on the attainable Q/V -ratio.

TO cavities, designed with resolution limitation and
with different maximum outer dimensions of t/a = 4.273,
t/a = 7, t/a = 11 and t/a = 15 are presented in Fig. 3(a)-
(d). It is seen that all the optimized cavities retain bow-
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TABLE I. Performance of the TO, L1 and SO L1 cavities
with t/a = 7 for the fundamental resonant mode

Design λ [nm] Q V
[
(λ/n)3

]
Q/V

[
(n/λ)3

]

TO (a) 1549 1062 0.0002651 4006× 103

TO Len. (c) 1554 2979 0.1083 27.50× 103

L1 (e) 1451 265.4 0.3142 0.8446× 103

SO L1 (g) 1506 486.7 0.3330 1.462× 103
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FIG. 3. (a)-(d) TO 3D PhC membrane cavities with different
sizes. (e) Extracted elliptic ring grating cavity.

tie shape region surrounded by the elliptic ring gratings
adapted to a central bow-tie shape, indicating the im-
portance of both types of features in attaining a high
Q/V -ratio. More complex geometric features are seen to
appear in the largest cavity (Fig. 3(d)). These intricate
features are however less important for the design per-
formance due to the low field intensity further from the
cavity center.

By extracting the elliptic rings and bow-tie feature
from the TO cavity in Fig. 3(d) and fitting a simpli-
fied elliptic grating structure with varying bar width
and spacing, an elliptic ring grating cavity is obtained,
see Fig. 3(e). Corresponding elliptic ring grating cavities
for t/a = 11, t/a = 7, t/a = 4.273 are obtained by re-
moving one, two and three ellipse rings from the design
in Fig. 3(e).

The performance of the reference, TO with resolution
limitation and parametrized ring cavities are shown in
Fig. 4. SO L1 cavities are obtained by performing a SO
for each individual size. Note that the sizes of the ellip-
tic ring grating cavities deviate from the other cavities.
The t/a-values reported in Fig. 4 correspond to the di-
mension in the x-direction. As expected, the larger the
cavity size, the larger the Q/V -ratio. Unsurprisingly, the
TO cavities are seen to exhibit the best performance fol-
lowed by the ellipse ring grating cavities. The elliptic

(a)

(b) (c)

FIG. 4. Overall performance comparison of different cavities
vs cavity size. (a) Q/V vs cavity size. (b) Q vs cavity size.
(c) V vs cavity size.

ring grating cavities possess smaller Q compared to the
corresponding TO cavities, but have similar V. Moreover,
it is seen that increasing cavity size can enhance Q sig-
nificantly, however, V does not change much since the
main contribution to the low V stems from the bow-tie
at the cavity center. For the largest size, there is no sig-
nificant difference in terms of Q between the TO and SO
cavities since the in-plane loss is very small in the large
cavity and the Q is mainly dominated by out-of-plane
loss. Comparing the TO designs to the L1 and SO L1
cavities, a significant decrease in V is observed for all
sizes. This indicates that to attain a lower V, significant
geometric changes to the cavity are required. Moreover
the extracted elliptic ring grating cavities exhibit more
in-plane losses represented by smaller Q than the SO L1
and TO cavities for large cavity size. This implies that
the smaller branches attached in the ring gratings and
the features at the membrane corners in Fig. 3 (c)-(d)
can facilitate a higher Q. However, the simplicity of the
parametrized elliptic ring cavity may be appealing from
a fabrication point of view.

In conclusion, a density-based TO method has been
employed to the systematic design of manufacturable
small finite-size membrane cavities with a smallest fea-
ture size of 74 nm, well above standard EBL tolerances22.
Further, the influence of cavity size on Q and V was in-
vestigated. Inspired by the TO designs, elliptic ring grat-
ing cavities were extracted using parametric models. The
overall comparison of cavity performances demonstrates
that the TO cavities perform best among all the cavities
considered followed by the extracted ring grating cavi-
ties. By increasing the cavity size, one can obtain higher
Q, however there is no significant improvement in V. The

FIG. 3. (a)-(d) TO 3D PhC membrane cavities with different
sizes. (e) Extracted elliptic ring grating cavity.

tie shape region surrounded by the elliptic ring gratings
adapted to a central bow-tie shape, indicating the im-
portance of both types of features in attaining a high
Q/V -ratio. More complex geometric features are seen to
appear in the largest cavity (Fig. 3(d)). These intricate
features are however less important for the design per-
formance due to the low field intensity further from the
cavity center.

By extracting the elliptic rings and bow-tie feature
from the TO cavity in Fig. 3(d) and fitting a simpli-
fied elliptic grating structure with varying bar width
and spacing, an elliptic ring grating cavity is obtained,
see Fig. 3(e). Corresponding elliptic ring grating cavities
for t/a = 11, t/a = 7, t/a = 4.273 are obtained by re-
moving one, two and three elliptic rings from the design
in Fig. 3(e).

The performance of the reference, TO with resolution
limitation and parametrized ring cavities are shown in
Fig. 4. SO L1 cavities are obtained by performing a SO
for each individual size. Note that the sizes of the ellip-
tic ring grating cavities deviate from the other cavities.
The t/a-values reported in Fig. 4 correspond to the di-
mension in the x-direction. As expected, the larger the
cavity size, the larger the Q/V -ratio. Unsurprisingly, the
TO cavities are seen to exhibit the best performance fol-
lowed by the elliptic ring grating cavities. The elliptic
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TABLE I. Performance of the TO, L1 and SO L1 cavities
with t/a = 7 for the fundamental resonant mode

Design λ [nm] Q V
[
(λ/n)3

]
Q/V

[
(n/λ)3

]

TO (a) 1549 1062 0.0002651 4006× 103

TO Len. (c) 1554 2979 0.1083 27.50× 103

L1 (e) 1451 265.4 0.3142 0.8446× 103

SO L1 (g) 1506 486.7 0.3330 1.462× 103

t/a=15(d) (e) t/a=15

t/a=4.273 t/a=11(a) (c)t/a=7(b)

1 µm

FIG. 3. (a)-(d) TO 3D PhC membrane cavities with different
sizes. (e) Extracted elliptic ring grating cavity.
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appear in the largest cavity (Fig. 3(d)). These intricate
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corresponding TO cavities, but have similar V. Moreover,
it is seen that increasing cavity size can enhance Q sig-
nificantly, however, V does not change much since the
main contribution to the low V stems from the bow-tie
at the cavity center. For the largest size, there is no sig-
nificant difference in terms of Q between the TO and SO
cavities since the in-plane loss is very small in the large
cavity and the Q is mainly dominated by out-of-plane
loss. Comparing the TO designs to the L1 and SO L1
cavities, a significant decrease in V is observed for all
sizes. This indicates that to attain a lower V, significant
geometric changes to the cavity are required. Moreover
the extracted elliptic ring grating cavities exhibit more
in-plane losses represented by smaller Q than the SO L1
and TO cavities for large cavity size. This implies that
the smaller branches attached in the ring gratings and
the features at the membrane corners in Fig. 3 (c)-(d)
can facilitate a higher Q. However, the simplicity of the
parametrized elliptic ring cavity may be appealing from
a fabrication point of view.

In conclusion, a density-based TO method has been
employed to the systematic design of manufacturable
small finite-size membrane cavities with a smallest fea-
ture size of 74 nm, well above standard EBL tolerances22.
Further, the influence of cavity size on Q and V was in-
vestigated. Inspired by the TO designs, elliptic ring grat-
ing cavities were extracted using parametric models. The
overall comparison of cavity performances demonstrates
that the TO cavities perform best among all the cavities
considered followed by the extracted ring grating cavi-
ties. By increasing the cavity size, one can obtain higher
Q, however there is no significant improvement in V. The
lower V requires significant geometric changes in the cav-
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ring grating cavities possess smaller Q compared to the
corresponding TO cavities, but have similar V. Moreover,
it is seen that increasing cavity size can enhance Q sig-
nificantly, however, V does not change much since the
main contribution to the low V stems from the bow-tie
at the cavity center. For the largest size, there is no sig-
nificant difference in terms of Q between the TO and SO
cavities since the in-plane loss is very small in the large
cavity and the Q is mainly dominated by out-of-plane
loss. Comparing the TO designs to the L1 and SO L1
cavities, a significant decrease in V is observed for all
sizes. This indicates that to attain a lower V, significant
geometric changes to the cavity are required. Moreover
the extracted elliptic ring grating cavities exhibit more
in-plane losses represented by smaller Q than the SO L1
and TO cavities for large cavity size. This implies that
the smaller branches attached in the ring gratings and
the features at the membrane corners in Fig. 3 (c)-(d)
can facilitate a higher Q. However, the simplicity of the
parametrized elliptic ring cavity may be appealing from
a fabrication point of view.

In conclusion, a density-based TO method has been
employed to the systematic design of manufacturable
small finite-size membrane cavities with a smallest fea-
ture size of 74 nm, well above standard EBL tolerances22.
Further, the influence of cavity size on Q and V was in-
vestigated. Inspired by the TO designs, elliptic ring grat-
ing cavities were extracted using parametric models. The
overall comparison of cavity performances demonstrates
that the TO cavities perform best among all the cavities
considered followed by the extracted ring grating cavi-
ties. By increasing the cavity size, one can obtain higher
Q, however there is no significant improvement in V. The
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lower V requires significant geometric changes in the cav-
ity center, such as from L1 to elliptic ring grating cavities.
Moreover resolution restrictions lead to near-diffraction-
limited volumes. Smaller features are required to reach a
deep-subwavelength mode volume. By reducing the min-
imum length scale and introducing a smaller fixed ma-
terial region at the cavity center it would be possible to
obtain designs with significantly lower V while ensuring
that the field is confined to the solid. Even though this
study is mainly focused on designing cavities with field
confinement in solid, the whole procedure can be used to
design cavities with field confinement in the air as well,
suitable for other applications such as optical tweezers35.
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