836 research outputs found

    Candidate hypervelocity stars of spectral type G and K revisited

    Full text link
    Hypervelocity stars (HVS) move so fast that they are unbound to the Galaxy. When they were first discovered in 2005, dynamical ejection from the supermassive black hole (SMBH) in the Galactic Centre (GC) was suggested as their origin. The two dozen HVSs known today are young massive B stars, mostly of 3-4 solar masses. Recently, 20 HVS candidates of low mass were discovered in the Segue G and K dwarf sample, but none of them originates from the GC. We embarked on a kinematic analysis of the Segue HVS candidate sample using the full 6D phase space information based on new proper motion measurements. Their orbital properties can then be derived by tracing back their trajectories in different mass models of our Galaxy. We present the results for 14 candidate HVSs, for which proper motion measurements were possible. Significantly lower proper motions than found in the previous study were derived. Considering three different Galactic mass models we find that all stars are bound to the Galaxy. We confirm that the stars do not originate from the GC. The distribution of their proper motions and radial velocities is consistent with predictions for runaway stars ejected from the Galactic disk by the binary supernova mechanism. However, their kinematics are also consistent with old disk membership. Moreover, most stars have rather low metallicities and strong α\alpha-element enrichment as typical for thick disk and halo stars, whereas the metallicity of the three most metal-rich stars could possibly indicate that they are runaway stars from the thin disk. One star shows halo kinematics.Comment: A&A letter accepte

    Hot subdwarf stars and their connection to thermonuclear supernovae

    Get PDF
    Hot subdwarf stars (sdO/Bs) are evolved core helium-burning stars with very thin hydrogen envelopes, which can be formed by common envelope ejection. Close sdB binaries with massive white dwarf (WD) companions are potential progenitors of thermonuclear supernovae type Ia (SN Ia). We discovered such a progenitor candidate as well as a candidate for a surviving companion star, which escapes from the Galaxy. More candidates for both types of objects have been found by crossmatching known sdB stars with proper motion and light curve catalogues. The Gaia mission will provide accurate astrometry and light curves of all the stars in our hot subdwarf sample and will allow us to compile a much larger all-sky catalogue of those stars. In this way we expect to find hundreds of progenitor binaries and ejected companions.Comment: Proceedings of the 11th Pacific Rim Conference on Stellar Astrophysics, Hong Kong 2015, Journal of Physics: Conference Series, in pres

    The enigmatic He-sdB pulsator LS IV-14^\circ116: new insights from the VLT

    Full text link
    The intermediate Helium subdwarf B star LS IV-14^\circ116 is a unique object showing extremely peculiar atmospheric abundances as well as long-period pulsations that cannot be explained in terms of the usual opacity mechanism. One hypothesis invoked was that a strong magnetic field may be responsible. We discredit this possibility on the basis of FORS2 spectro-polarimetry, which allows us to rule out a mean longitudinal magnetic field down to 300 G. Using the same data, we derive the atmospheric parameters for LS IV-14^\circ116 to be TeffT_{\rm eff} = 35,150±\pm111 K, logg\log{g} = 5.88±\pm0.02 and logN(He)/N(H)\log{N(\rm He)/N(\rm H)} = -0.62±\pm0.01. The high surface gravity in particular is at odds with the theory that LS IV-14^\circ116 has not yet settled onto the Helium Main Sequence, and that the pulsations are excited by an ϵ\epsilon mechanism acting on the Helium-burning shells present after the main Helium flash. Archival UVES spectroscopy reveals LS IV-14^\circ116 to have a radial velocity of 149.1±\pm2.1 km/s. Running a full kinematic analysis, we find that it is on a retrograde orbit around the Galactic centre, with a Galactic radial velocity component UU=13.23±\pm8.28 km/s and a Galactic rotational velocity component VV=-55.56±\pm22.13 km/s. This implies that LS IV-14^\circ116 belongs to the halo population, an intriguing discovery.Comment: accepted for publication in A&

    How does the Structure of Spherical Dark Matter Halos Affect the Types of Orbits in Disk Galaxies?

    Full text link
    The main objective of this work is to determine the character of orbits of stars moving in the meridional (R,z)(R,z) plane of an axially symmetric time-independent disk galaxy model with a central massive nucleus and an additional spherical dark matter halo component. In particular, we try to reveal the influence of the scale length of the dark matter halo on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when this parameter varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely between ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our numerical computations reveal that when the dark matter halo is highly concentrated, that is when the scale length has low values the vast majority of star orbits move in regular orbits, while on the other hand in less concentrated dark matter halos the percentage of chaos increases significantly. We also compared our results with early related work.Comment: Published in Baltic Astronomy journal. arXiv admin note: previous papers with related context: arXiv:1404.4194, arXiv:1404.3961, arXiv:1309.560

    Revealing the influence of dark matter on the nature of motion and the families of orbits in axisymmetric galaxy models

    Full text link
    An axially symmetric galactic gravitational model composed of a dense, massive and spherical nucleus with an additional dark matter halo component was used, to distinguish between the regular and chaotic character of orbits of stars that move in the meridional plane (R,z). We investigated two different cases: (i) a flat-disk galaxy (ii) an elliptical galaxy. It is of particular interest to reveal how the portion of the dark matter inside the main body of the galaxy influences the ordered or chaotic nature of motion. Varying the ratio of dark matter to stellar mass, we monitored the evolution not only of the percentage of chaotic orbits, but also of the percentages of orbits that compose the main regular resonant families, by classifying regular orbits into different families. Moreover we tried, to reveal how the starting position of the parent periodic orbits of each regular family changes with respect to the fractional portion of dark matter. We compared our results with previous similar work.Comment: Published in Astronomy & Astrophysics (A&A) journal. arXiv admin note: previous paper with related context: arXiv:1309.560

    The population of hot subdwarf stars studied with Gaia I. The catalogue of known hot subdwarf stars

    Get PDF
    In preparation for the upcoming all-sky data releases of the Gaia mission we compiled a catalogue of known hot subdwarf stars and candidates drawn from the literature and yet unpublished databases. The catalogue contains 5613 unique sources and provides multi-band photometry from the ultraviolet to the far infrared, ground based proper motions, classifications based on spectroscopy and colours, published atmospheric parameters, radial velocities and light curve variability information. Using several different techniques we removed outliers and misclassified objects. By matching this catalogue with astrometric and photometric data from the Gaia mission, we will develop selection criteria to construct a homogeneous, magnitude-limited all-sky catalogue of hot subdwarf stars based on Gaia data.Comment: 11 pages, A&A accepte
    corecore