34 research outputs found

    Two-color laser scattering for diagnostics of hydrogen plasma

    Get PDF
    A two-color laser scattering (2CLS) method is proposed to measure electron and neutral densities, as well as electron and ion temperatures in hydrogen plasma. 2CLS uses two probe wavelengths to identify the Rayleigh scattering and Thomson scattering contributions coming from neutrals and electrons, respectively. Laser scattering signals were simulated for various conditions of a hydrogen plasma at thermodynamic equilibrium applying the available and calculated cross-sections for Rayleigh scattering by ground-sate and excited hydrogen atoms at probe wavelengths of 355 nm and 532 nm. The developed 2CLS method was eventually applied to study the laser-induced plasma in hydrogen at near atmospheric pressure. Temporally and spatially resolved electron and ion temperatures and densities of electrons and hydrogen atoms (ground-state and excited) were determined

    What can we learn about laser-induced plasmas from Thomson scattering experiments

    No full text
    This article describes laser Thomson scattering as applied to investigate laser-induced plasmas originating from gas breakdown or ablation of solid samples. Thomson scattering provides a reliable and direct mean of determining plasma electron density and electron temperature with high spatial and temporal resolution. Moreover, unlike e.g. optical emission spectroscopy, no assumptions about axial symmetry, thermodynamic conditions in the plasma or its chemical composition are needed to quantify these fundamental plasma parameters. Because Thomson scattering is inherently accompanied by Rayleigh light scattering, information about concentration of heavy particles and their temperature can be simultaneously derived from the experimental data. The heavy particle temperature and the electron one are the primary indicators of the plasma thermodynamic equilibrium. The goals of this article are to describe the theory of Thomson scattering relevant for the studies of low-temperature laser-induced plasmas, discuss the instrumental details of Thomson scattering experiments, and review the results of studies in which this technique has been used to characterize laser-induced plasmas
    corecore