74 research outputs found

    Influence of magnetic impurities on the heat capacity of nuclear spins

    Full text link
    It is found that in a wide range of temperatures and magnetic fields even a small concentration of magnetic impurities in a sample leads to a T−1T^{-1} temperature dependence of the nuclear heat capacity. This effect is related to a nuclear-spin polarization by the magnetic impurities. The parameter that controls the theory turns out not to be the impurity concentration CimpC_{imp} but instead the quantity cimpμe/μnc_{imp} \mu_e / \mu_n, where μe\mu_e and μn\mu_n are the magnetic moments of an electron and a nucleus, respectively. The ratio of μe\mu_e and μn\mu_n is of order of 10310^3

    Charged complexes at the surface of liquid helium

    Full text link
    Charged clusters in liquid helium in an external electric field form a two-dimensional system below the helium surface. This 2D system undergoes a phase transition from a liquid to a Wigner crystal at rather high temperatures. Contrary to the electron Wigner crystal, the Wigner lattice of charged clusters can be detected directly.Comment: 6 pages, 1 figur

    Electron mobility on a surface of dielectric media: influence of surface level atoms

    Full text link
    We calculate the contribution to the electron scattering rate from the surface level atoms (SLA), proposed in [A.M. Dyugaev, P.D. Grigoriev, JETP Lett. 78, 466 (2003)]. The inclusion of these states into account was sufficient to explain the long-standing puzzles in the temperature dependence of the surface tension of both He isotopes and to reach a very good agreement between theory and experiment. We calculate the contribution from these SLA to the surface electron scattering rate and explain some features in the temperature dependence of the surface electron mobility. This contribution is essential at low temperature T<0.5T<0.5 when the He vapor concentration is exponentially small. For an accurate calculation of the electron mobility one also needs to consider the influence of the clamping electric field on the surface electron wave function and the temperature dependence of the He3 chemical potential.Comment: 6 pages, 1 figur

    Nuclear magnetic susceptibility of metals with magnetic impurities

    Full text link
    We consider the contribution of magnetic impurities to the nuclear magnetic susceptibility χ\chi and to the specific heat CC of a metal. The impurity contribution to the magnetic susceptibility has a 1/T21/T^2 behaviour, and the impurity contribution to the specific heat has a 1/T1/T behaviour, both in an extended region of temperatures TT. In the case of a dirty metal the RKKY interaction of nuclear spins and impurity spins is suppressed for low temperatures and the main contribution to CC and χ\chi is given by their dipole-dipole interaction.Comment: 9 pages, 4 figures, REVTE

    Rearrangement of the Fermi Surface of Dense Neutron Matter and Direct Urca Cooling of Neutron Stars

    Get PDF
    It is proposed that a rearrangement of single-particle degrees of freedom may occur in a portion of the quantum fluid interior of a neutron star. Such a rearrangement is associated with the pronounced softening of the spin-isospin collective mode which, under increasing density, leads to pion condensation. Arguments and estimates based on fundamental relations of many-body theory show that one realization of this phenomenon could produce very rapid cooling of the star via a direct nucelon Urca process displaying a T5T^5 dependence on temperature.Comment: 8 pages, 2 figure

    Strong coupling in the Kondo problem in the low-temperature region

    Full text link
    The magnetic field dependence of the average spin of a localized electron coupled to conduction electrons with an antiferromagnetic exchange interaction is found for the ground state. In the magnetic field range μH∼0.5Tc\mu H\sim 0.5 T_c (TcT_c is the Kondo temperature) there is an inflection point, and in the strong magnetic field range μH≫Tc\mu H\gg T_c, the correction to the average spin is proportional to (Tc/μH)2(T_c/\mu H)^2. In zero magnetic field, the interaction with conduction electrons also leads to the splitting of doubly degenerate spin impurity states

    Universal behavior at discontinuous quantum phase transitions

    Full text link
    Discontinuous quantum phase transitions besides their general interest are clearly relevant to the study of heavy fermions and magnetic transition metal compounds. Recent results show that in many systems belonging to these classes of materials, the magnetic transition changes from second order to first order as they approach the quantum critical point (QCP). We investigate here some mechanisms that may be responsible for this change. Specifically the coupling of the order parameter to soft modes and the competition between different types of order near the QCP. For weak first order quantum phase transitions general results are obtained. In particular we describe the thermodynamic behavior at this transition when it is approached from finite temperatures. This is the discontinuous equivalent of the non-Fermi liquid trajectory close to a conventional QCP in a heavy fermion material.Comment: 7 pages, 3 figure
    • …
    corecore