1,129 research outputs found
Model Dependence of the Properties of S11 Baryon Resonances
The properties of baryon resonances are extracted from a complicated process
of fitting sophisticated, empirical models to data. The reliability of this
process comes from the quality of data and the robustness of the models
employed. With the large of amount of data coming from recent experiments, this
is an excellent time for a study of the model dependence of this extraction
process. A test case is chosen where many theoretical details of the model are
required, the S11 partial wave. The properties of the two lowest N* resonances
in this partial wave are determined using various models of the resonant and
non-resonant amplitudes.Comment: 24 pages, 10 figures; revised fits with error estimates, expanded
comparison between CMB and K-matrix model
Longitudinal response function of 4He with a realistic force
The longitudinal response function of 4He is calculated with the Argonne V18
potential. The comparison with experiment suggests the need of a three-body
force. When adding the Urbana IX three-body potential in the calculation of the
lower longitudinal multipoles, the total strength is suppressed in the
quasi-elastic peak, towards the trend of the experimental data.Comment: 3 pages, 3 figures, proceedings of the 20th European Conference on
Few-Body Problems in Physics (EFB20
Evidence for the fourth P11 resonance predicted by the constituent quark model
It is pointed out that the third of five low-lying P11 states predicted by a
constituent quark model can be identified with the third of four states in a
solution from a three-channel analysis by the Zagreb group. This is one of the
so-called ``missing'' resonances, predicted at 1880 MeV. The fit of the Zagreb
group to the pi N -> eta N data is the crucial element in finding this fourth
resonance in the P11 partial wave.Comment: 8 pages, revtex; expanded acknowledgement
Covariant calculation of mesonic baryon decays
We present covariant predictions for pi and eta decay modes of N and Delta
resonances from relativistic constituent-quark models based on
one-gluon-exchange and Goldstone-boson-exchange dynamics. The results are
calculated within the point-form approach to Poincare-invariant relativistic
quantum mechanics applying a spectator-model decay operator. The direct
predictions of the constituent-quark models for covariant pi and eta decay
widths show a behaviour completely different from previous ones calculated in
nonrelativistic or so-called semirelativistic approaches. It is found that the
present theoretical results agree with experiment only in a few cases but
otherwise always remain smaller than the experimental data (as compiled by the
Particle Data Group). Possible reasons for this behaviour are discussed with
regard to the quality of both the quark-model wave functions and the mesonic
decay operator.Comment: 10 pages, 2 figures, accepted for publication in Phys. Rev.
Unquenching the Quark Model and Screened Potentials
The low-lying spectrum of the quark model is shown to be robust under the
effects of `unquenching'. In contrast, the use of screened potentials is shown
to be of limited use in models of hadrons. Applications to unquenching the
lattice Wilson loop potential and to glueball mixing in the adiabatic hybrid
spectrum are also presented.Comment: 6 pages, 3 ps figures, revtex. Version to appear in J. Phys.
Pseudoscalar meson photoproduction: from known to undiscovered resonances
The role of dynamics in spin observables for pseudoscalar meson
photoproduction is investigated using a density matrix approach in a multipole
truncated framework. Extraction of novel rules for and reactions based on resonance dominance, and on
other broad and reasonable dynamical assumptions, are discussed. Observables
that are particularly sensitive to missing nucleonic resonances predicted by
quark-based approaches, are singled out.Comment: 22 pages, latex, 3 figure
- …