4,573 research outputs found

    Action research in physical education: focusing beyond myself through cooperative learning

    Get PDF
    This paper reports on the pedagogical changes that I experienced as a teacher engaged in an action research project in which I designed and implemented an indirect, developmentally appropriate and child‐centred approach to my teaching. There have been repeated calls to expunge – or at least rationalise – the use of traditional, teacher‐led practice in physical education. Yet despite the advocacy of many leading academics there is little evidence that such a change of approach is occurring. In my role as teacher‐as‐researcher I sought to implement a new pedagogical approach, in the form of cooperative learning, and bring about a positive change in the form of enhanced pupil learning. Data collection included a reflective journal, post‐teaching reflective analysis, pupil questionnaires, student interviews, document analysis, and non‐participant observations. The research team analysed the data using inductive analysis and constant comparison. Six themes emerged from the data: teaching and learning, reflections on cooperation, performance, time, teacher change, and social interaction. The paper argues that cooperative learning allowed me to place social and academic learning goals on an even footing, which in turn placed a focus on pupils’ understanding and improvement of skills in athletics alongside their interpersonal development

    Asymptotic Level Spacing of the Laguerre Ensemble: A Coulomb Fluid Approach

    Full text link
    We determine the asymptotic level spacing distribution for the Laguerre Ensemble in a single scaled interval, (0,s)(0,s), containing no levels, E_{\bt}(0,s), via Dyson's Coulomb Fluid approach. For the α=0\alpha=0 Unitary-Laguerre Ensemble, we recover the exact spacing distribution found by both Edelman and Forrester, while for α≠0\alpha\neq 0, the leading terms of E2(0,s)E_{2}(0,s), found by Tracy and Widom, are reproduced without the use of the Bessel kernel and the associated Painlev\'e transcendent. In the same approximation, the next leading term, due to a ``finite temperature'' perturbation (\bt\neq 2), is found.Comment: 10pp, LaTe

    Tachyons in de Sitter space and analytical continuation from dS/CFT to AdS/CFT

    Get PDF
    We discuss analytic continuation from d-dimensional Lorentzian de Sitter (dSd_d) to d-dimensional Lorentzian anti-de Sitter (AdSd_{d}) spacetime. We show that AdSd_{d}, with opposite signature of the metric, can be obtained as analytic continuation of a portion of dSd_d. This implies that the dynamics of (positive square-mass) scalar particles in AdSd_{d} can be obtained from the dynamics of tachyons in dSd_d. We discuss this correspondence both at the level of the solution of the field equations and of the Green functions. The AdS/CFT duality is obtained as analytic continuation of the dS/CFT duality.Comment: 17 pages, 1 figure, JHEP styl

    Dyson's Brownian Motion and Universal Dynamics of Quantum Systems

    Full text link
    We establish a correspondence between the evolution of the distribution of eigenvalues of a N×NN\times N matrix subject to a random Gaussian perturbing matrix, and a Fokker-Planck equation postulated by Dyson. Within this model, we prove the equivalence conjectured by Altshuler et al between the space-time correlations of the Sutherland-Calogero-Moser system in the thermodynamic limit and a set of two-variable correlations for disordered quantum systems calculated by them. Multiple variable correlation functions are, however, shown to be inequivalent for the two cases.Comment: 10 pages, revte

    Eigenvalue correlations on Hyperelliptic Riemann surfaces

    Full text link
    In this note we compute the functional derivative of the induced charge density, on a thin conductor, consisting of the union of g+1 disjoint intervals, J:=âˆȘj=1g+1(aj,bj),J:=\cup_{j=1}^{g+1}(a_j,b_j), with respect to an external potential. In the context of random matrix theory this object gives the eigenvalue fluctuations of Hermitian random matrix ensembles where the eigenvalue density is supported on J.Comment: latex 2e, seven pages, one figure. To appear in Journal of Physics

    Quantum Heisenberg Chain with Long-Range Ferromagnetic Interactions at Low Temperature

    Full text link
    A modified spin-wave theory is applied to the one-dimensional quantum Heisenberg model with long-range ferromagnetic interactions. Low-temperature properties of this model are investigated. The susceptibility and the specific heat are calculated; the relation between their behaviors and strength of the long-range interactions is obtained. This model includes both the Haldane-Shastry model and the nearest-neighbor Heisenberg model; the corresponding results in this paper are in agreement with the solutions of both the models. It is shown that there exists an ordering transition in the region where the model has longer-range interactions than the HS model. The critical temperature is estimated.Comment: 17 pages(LaTeX REVTeX), 1 figure appended (PostScript), Technical Report of ISSP A-274

    Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions

    Full text link
    Quantum Heisenberg ferromagnets with long-range interactions decayin as 1/rp1/r^p in one and two dimensions are investigated by means of the Green's function method. It is shown that there exists a finite-temperature phase transition in the region d<p<2dd<p<2 d for the dd-dimensional case and that no transitions at any finite temperature exist for p≄2dp\ge 2 d; the critical temperature is also estimated. We study the magnetic properties of this model. We calculate the critical exponents' dependence on pp; these exponents also satisfy a scaling relation. Some of the results were also found using the modified spin-wave theory and are in remarkable agreement with each other.Comment: 13 pages(LaTeX REVTeX), 2 figures not included (postscript files available on request), submitted to Phys.Rev.

    Distribution of the Riemann zeros represented by the Fermi gas

    Full text link
    The multiparticle density matrices for degenerate, ideal Fermi gas system in any dimension are calculated. The results are expressed as a determinant form, in which a correlation kernel plays a vital role. Interestingly, the correlation structure of one-dimensional Fermi gas system is essentially equivalent to that observed for the eigenvalue distribution of random unitary matrices, and thus to that conjectured for the distribution of the non-trivial zeros of the Riemann zeta function. Implications of the present findings are discussed briefly.Comment: 7 page

    A topological characterization of delocalization in a spin-orbit coupling system

    Full text link
    We show that wavefunctions in a two-dimensional (2D) electron system with spin-orbit coupling can be characterized by a topological quantity--the Chern integer due to the existence of the intrinsic Kramers degeneracy. The localization-delocalization transition in such a system is studied in terms of such a Chern number description, which reproduces the known metal-insulator transition point. The present work suggests a unified picture for various known 2D delocalization phenomena based on the same topological characterization.Comment: RevTex, 12 pages; Two PostScript figure

    Systematic Renormalization in Hamiltonian Light-Front Field Theory: The Massive Generalization

    Get PDF
    Hamiltonian light-front field theory can be used to solve for hadron states in QCD. To this end, a method has been developed for systematic renormalization of Hamiltonian light-front field theories, with the hope of applying the method to QCD. It assumed massless particles, so its immediate application to QCD is limited to gluon states or states where quark masses can be neglected. This paper builds on the previous work by including particle masses non-perturbatively, which is necessary for a full treatment of QCD. We show that several subtle new issues are encountered when including masses non-perturbatively. The method with masses is algebraically and conceptually more difficult; however, we focus on how the methods differ. We demonstrate the method using massive phi^3 theory in 5+1 dimensions, which has important similarities to QCD.Comment: 7 pages, 2 figures. Corrected error in Eq. (11), v3: Added extra disclaimer after Eq. (2), and some clarification at end of Sec. 3.3. Final published versio
    • 

    corecore