44 research outputs found

    Practical security bounds against the Trojan-horse attack in quantum key distribution

    Full text link
    In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive optical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.Comment: 18 pages, 11 figures. Some typos correcte

    Backflashes from fast-gated avalanche photodiodes in quantum key distribution

    Get PDF
    InGaAs single-photon avalanche photodiodes (APDs) are key enablers for high-bit rate quantum key distribution. However, the deviation of such detectors from ideal models can open side-channels for an eavesdropper, Eve, to exploit. The phenomenon of backflashes, whereby APDs reemit photons after detecting a photon, gives Eve the opportunity to passively learn the information carried by the detected photon without the need to actively interact with the legitimate receiver, Bob. While this has been observed in slow-gated detectors, it has not been investigated in fast-gated APDs where it has been posited that this effect would be lessened. Here, we perform the first experiment to characterize the security threat that backflashes provide in a GHz-gated self-differencing APD using the metric of information leakage. We find that, indeed, the information leakage is lower than that reported for slower-gated detectors, and we show that its effect on the secure key rate is negligible. We also relate the rate of backflash events to the APD dark current, thereby suggesting that their origin is the InP multiplication region in the APD

    A modulator-free quantum key distribution transmitter chip

    Get PDF
    Quantum key distribution (QKD) has convincingly been proven compatible with real life applications. Its wide-scale deployment in optical networks will benefit from an optical platform that allows miniature devices capable of encoding the necessarily complex signals at high rates and with low power consumption. While photonic integration is the ideal route toward miniaturisation, an efficient route to high-speed encoding of the quantum phase states on chip is still missing. Consequently, current devices rely on bulky and high power demanding phase modulation elements which hinder the sought-after scalability and energy efficiency. Here we exploit a novel approach to high-speed phase encoding and demonstrate a compact, scalable and power efficient integrated quantum transmitter. We encode cryptographic keys on-demand in high repetition rate pulse streams using injection-locking with deterministic phase control at the seed laser. We demonstrate record secure-key-rates under multi-protocol operation. Our modulator-free transmitters enable the development of high-bit rate quantum communications devices, which will be essential for the practical integration of quantum key distribution in high connectivity networks

    Inherent thermometry in a hybrid superconducting tunnel junction

    Full text link
    We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction, and reports on seven research projects.National Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant P01 DC00119National Institutes of Health Grant F32 DC00073National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 2 R01 DC00238National Institutes of Health Grant 2 R01 DC00235National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant T32 DC00006Whitaker Health Sciences Fun

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3 and reports on nine research projects.National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 5 P01 NS23734)National Institutes of Health (Grant 5 R01 NS18682)National Institutes of Health (Grant 5 RO1 NS25995)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 R01 NS20322)National Institutes of Health (Grant 5 T32 NS07047)Johnson and Johnson Foundatio

    Signal Transmission in the Auditory System

    Get PDF
    Contains table of contents for Section 3, an introduction and reports on six research projects.Health Sciences FundNational Institutes of Health Grant 5 R01 DC00194National Institutes of Health Grant 8 P01 DC00119National Institutes of Health Grant 5 R01 DC00473National Institutes of Health Grant 5 R01 DC00238National Institutes of Health Grant 5 T32 DC00006National Institutes of Health Grant 5 P01 DC00361National Institutes of Health Grant 5 R01 DC00235Peoples Republic of China FellowshipUnisys Corporation Doctoral FellowshipWhitaker Health Sciences Fellowshi
    corecore