15 research outputs found

    A Conserved CaM- and Radial Spoke–Associated Complex Mediates Regulation of Flagellar Dynein Activity

    Get PDF
    For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)- binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms

    A conserved CaM- and radial spoke–associated complex mediates regulation of flagellar dynein activity

    Get PDF
    For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)– binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms

    PF15p Is the Chlamydomonas Homologue of the Katanin p80 Subunit and Is Required for Assembly of Flagellar Central Microtubules

    Get PDF
    Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubule

    Calmodulin and PF6 are components of a complex that localizes to the C1 microtubule of the flagellar central apparatus

    Get PDF
    Studies of flagellar motility in Chlamydomonas mutants lacking specific central apparatus components have supported the hypothesis that the inherent asymmetry of this structure provides important spatial cues for asymmetric regulation of dynein activity. These studies have also suggested that specific projections associated with the C1 and C2 central tubules make unique contributions to modulating motility; yet, we still do not know the identities of most polypeptides associated with the central tubules. To identify components of the C1a projection, we took an immunoprecipitation approach using antibodies generated against PF6. The pf6 mutant lacks the C1a projection and possesses flagella that only twitch; calcium-induced modulation of dynein activity on specific doublet microtubules is also defective in pf6 axonemes. Our antibodies specifically precipitated five polypeptides in addition to PF6. Using mass spectrometry, we determined the amino acid identities of these five polypeptides. Most notably, the PF6-containing complex includes calmodulin. Using antibodies generated against each precipitated polypeptide, we confirmed that these polypeptides comprise a single complex with PF6, and we identified specific binding partners for each member of the complex. The finding of a calmodulin-containing complex as an asymmetrically assembled component of the central apparatus implicates the central apparatus in calcium modulation of flagellar waveform

    A Kinesin-Like Calmodulin-Binding Protein in Chlamydomonas: Evidence for a Role in Cell Division and Flagellar Functions

    Get PDF
    Kinesin-like calmodulin-binding protein, KCBP, is a novel member of the C-kinesin superfamily first discovered in flowering plants. This minus-end-directed kinesin exhibits Ca(2+)-calmodulin-sensitive motor activity in vitro and has been implicated in trichome morphogenesis and cell division. A homologue of KCBP is also found in the unicellular, biflagellate green alga Chlamydomonas reinhardtii (CrKCBP). Unlike plant cells, Chlamydomonas cells do not form trichomes and do not assemble a phragmoplast before cell division. To test whether CrKCBP is involved in additional microtubule-based processes not observed in plants, we generated antibodies against the putative calmodulin-binding domain and used these antibodies in biochemical and localization studies. In interphase cells CrKCBP primarily localizes near the base of the flagella, although surprisingly, a small fraction also localizes along the length of the flagella. CrKCBP is bound to isolated axonemes in an ATP-dependent fashion and is not a component of the dynein arms, radial spokes or central apparatus. During mitosis, CrKCBP appears concentrated at the centrosomes during prophase and metaphase. However, during telophase and cytokinesis CrKCBP co-localizes with the microtubules associated with the phycoplast. These studies implicate CrKCBP in flagellar functions as well as cell division

    Structural organization of the C1a-e-c supercomplex within the ciliary central apparatus

    Get PDF
    Nearly all motile cilia contain a central apparatus (CA) composed of two connected singlet microtubules with attached projections that play crucial roles in regulating ciliary motility. Defects in CA assembly usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of the CA projections are largely unknown. Here, we integrated biochemical and genetic approaches with cryo-electron tomography to compare the CA of wild-type Chlamydomonas with CA mutants. We identified a large ( \u3e 2 MD) complex, the C1a-e-c supercomplex, that requires the PF16 protein for assembly and contains the CA components FAP76, FAP81, FAP92, and FAP216. We localized these subunits within the supercomplex using nanogold labeling and show that loss of any one of them results in impaired ciliary motility. These data provide insight into the subunit organization and 3D structure of the CA, which is a prerequisite for understanding the molecular mechanisms by which the CA regulates ciliary beating

    FAP206 is a Microtubule-Docking Adapter for Ciliary Radial Spoke 2 and Dynein c

    Get PDF
    Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule

    PF19 Encodes the p60 Catalytic Subunit of Katanin and is Required for Assembly of the Flagellar Central Apparatus in Chlamydomonas

    Get PDF
    For all eukaryotic cilia the basal bodies provide a template for the assembly of the doublet microtubules, and intraflagellar transport provides a mechanism for transport of axonemal components into the growing cilium. What is not known is how the central pair of microtubules is nucleated or how their associated polypeptides are assembled. Here we report that the Chlamydomonas pf19 mutation results in a single amino acid change within the p60 catalytic subunit of katanin, and that this mutation prevents microtubule severing activity. The pf19 mutant has paralyzed flagella that lack the central apparatus. Using a combination of mutant analysis, RNAi-mediated reduction of protein expression and in vitro assays, we demonstrate that the p60 catalytic subunit of the microtubule severing protein katanin is required for central apparatus assembly in Chlamydomonas. In addition, we show that in Chlamydomonas the microtubule severing activity of p60 katanin is not required for stress-induced deflagellation or cell cycle progression as has been previously reported
    corecore