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Introduction
For eukaryotic cells that use cilia and fl agella for motile func-

tions, motility is commonly modulated in response to extracel-

lular cues; this modulation may include changes in waveform 

(Brokaw et al., 1974; Brokaw, 1979; Bessen et al., 1980; Kamiya 

and Witman, 1984), beat frequency (Verdugo, 1980), or direc-

tion of the effective stroke (Naitoh and Kaneko, 1972; Izumi 

and Miki-Noumura, 1985). Despite the diversity of responses 

between cell types, changes in motility are often preceded and 

mediated by changes in the intrafl agellar concentrations of the 

second messengers calcium and cAMP. Ciliary and fl agellar 

beating results from the spatial regulation of dynein activity 

along the axonemal microtubules (Satir, 1985). Our goal is to 

understand how changes in intrafl agellar calcium concentra-

tions are converted to changes in dynein-driven microtubule 

sliding to modulate motility.

Substantial evidence from our laboratory and others indi-

cates that the central apparatus and radial spokes form a signal 

transduction pathway that modulates ciliary and fl agellar beat-

ing in response to second messengers (for reviews see Porter and 

Sale, 2000; Smith and Yang, 2004). Using both functional and 

structural approaches, our previous studies demonstrated that 

calcium control of motility involves the regulation of dynein-

driven microtubule sliding and that CaM is a key axonemal 

calcium sensor (Smith, 2002a,b; Wargo and Smith, 2003; 

Wargo et al., 2004). Based on these results, we postulate that 

the calcium sensor regulates the activity of specifi c dynein sub-

forms and/or dynein arms attached to specifi c subsets of dou-

blet microtubules, thus modulating the size and shape of ciliary/

fl agellar bends.

Understanding how CaM might regulate dynein activity to 

modulate ciliary motility requires the localization of CaM within 

the axoneme as well as the identification of CaM binding 

partners. Yang et al. (2001) have reported that a fraction but not 

all of the axonemal CaM associates with the radial spokes in 

Chlamydomonas reinhardtii. We have identifi ed and character-

ized additional CaM-binding proteins in C. reinhardtii fl agella 

using an immunoprecipitation approach. We developed anti-

bodies against a peptide antigen unique to the C terminus of 

C. reinhardtii CaM and used these antibodies to precipitate CaM 

from extracted axonemal proteins. We previously reported that 

eight polypeptides precipitate with CaM and that these polypep-

tides form at least two different protein complexes (Wargo et al., 

2005). One complex is comprised of fi ve polypeptides in addi-

tion to CaM and is associated with the C1 microtubule of the 
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or virtually all cilia and eukaryotic fl agella, the 

second messengers calcium and cyclic adenosine 

monophosphate are implicated in modulating dynein-

driven microtubule sliding to regulate beating. Calmodulin 

(CaM) localizes to the axoneme and is a key calcium 

sensor involved in regulating motility. Using immuno-

precipitation and mass spectrometry, we identify members 

of a CaM-containing complex that are involved in 

regulating dynein activity. This complex includes fl agellar-

associated protein 91 (FAP91), which shares considerable 

sequence similarity to AAT-1, a protein originally identi-

fi ed in testis as an A-kinase anchor protein (AKAP)–

binding protein. FAP91 directly interacts with radial spoke 

protein 3 (an AKAP), which is located at the base of the 

spoke. In a microtubule sliding assay, the addition of anti-

bodies generated against FAP91 to mutant axonemes 

with reduced dynein activity restores dynein activity to 

wild-type levels. These combined results indicate that the 

CaM- and spoke-associated complex mediates regulatory 

signals between the radial spokes and dynein arms.
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axonemal central apparatus (Wargo et al., 2005). Here, we report 

the identities and localization of three polypeptides comprising 

the second CaM-containing complex and provide data support-

ing the hypothesis that this complex plays an important role in 

modulating the activity of specifi c subsets of dynein arms.

Results
CaM immunoprecipitation and peptide 
identifi cation
To identify CaM-containing complexes within the axoneme, 

we used anti-CaM antibodies in immunoprecipitation experi-

ments (Wargo et al., 2005). Using extracts isolated from mutant 

axonemes lacking the radial spokes (pf14), our anti-CaM anti-

bodies precipitated a total of eight polypeptides in addition to 

CaM (Fig. 1; see Fig. 4 a in Wargo et al., 2005). Five poly-

peptides form a complex that includes PF6 and localizes to the 

C1a projection of the central apparatus (Wargo et al., 2005). 

However, the three additional polypeptides that are precipitated 

(designated CaM-IP2, -IP3, and -IP4; Fig. 1) are present in all 

central apparatus–defective mutants, including pf6. Therefore, 

these three polypeptides are not components of the radial spokes 

or central apparatus. These three polypeptides are also precipi-

tated from extracts isolated from mutant axonemes lacking the 

outer dynein arms and inner arm I1 (pf28pf30; Fig. 1) as well as 

the inner arm–defective strains mia1 and mia2 (not depicted), 

indicating that they do not localize to these dynein subforms. 

All three polypeptides are also precipitated from the move 

backward–only strains mbo1 and mbo2 (unpublished data), 

indicating that the assembly of these polypeptides is unaffected 

in these mutant strains.

To determine the identities of CaM-IP2, -IP3, and -IP4, 

these polypeptides were excised from gels and analyzed by mass 

spectrometry (see Materials and methods; data summarized in 

Table I). The identity of CaM-IP2 was determined from four 

peptide sequences. Based on searches of the C. reinhardtii 
 genome database (version 3.0; http://genome.jgi-psf.org/Chlre3/

Chlre3.home.html), the CaM-IP2 gene is located on the same 

contig as Zsp1; therefore, the CaM-IP2 gene is most likely on 

linkage group VII. In searches of the C. reinhardtii proteome 

database, CaM-IP2 is fl agellar-associated protein 91 (FAP91; 

Pazour et al., 2005). BLAST searches reveal that CaM-IP2 

(FAP91) is most similar to the human homologue of AAT-1 

(C3orf15; GenBank/EMBL/DDBJ accession no. AAH35238; 

E value of E = 7e-49). AAT-1 was originally identifi ed as a 

testis-specifi c protein in mice that forms a quaternary complex 

with AMY-1 (a c-myc–binding protein), an A-kinase anchoring 

protein (AKAP), and two regulatory subunits of PKA (cAMP-

dependent protein kinase; Yukitake et al., 2002). More recently, 

a total of seven alternatively spliced isoforms of AAT-1 have 

been identifi ed, and some of these isoforms are expressed in a va-

riety of human tissues (Matsuda et al., 2005). The largest isoform 

of AAT-1, AAT-1L, is an �90-kD protein. The testis-specifi c 

isoform AAT-1α is reported to contain only the C-terminal 98 

amino acids of AAT-1L.

CaM-IP2 is 32% identical and 49% similar to AAT-1 over 

a stretch of 423 amino acids at the N terminus (Fig. S1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200703107/DC1). 

Sequence similarity with AAT-1 may extend beyond the N ter-

minus of the protein, but the C-terminal half of the CAM-IP2 

sequence is not represented in the C. reinhardtii genome. 

We have tried to complete the CaM-IP2 coding sequence using 

a variety of approaches, including 5′ and 3′ rapid amplifi cation 

of cDNA ends, obtaining small genomic fragments of CaM-IP2 

for sequencing, and optimizing our sequencing reactions for 

GC-rich sequences. We have confi rmed the predicted amino 

acid sequence for the N-terminal one third of the protein but 

were unsuccessful in obtaining the complete coding sequence. 

As judged by SDS-PAGE, the apparent molecular mass of 

CaM-IP2 is 183 kD, which is almost double that of AAT-1L. 

However, Northern blots of RNA isolated from wild-type cells 

indicate that the CaM-IP2 transcript is �4.4 kb (Fig. S2). Based 

on our experience comparing C. reinhardtii genomic and cod-

ing sequences, the true molecular weight of this protein is most 

likely no greater than 120 kD.

The identity of CaM-IP3 was determined from the amino 

acid sequence of fi ve peptides. Based on database searches, CaM-

IP3 is located on linkage group III and corresponds to FAP61. 

Using corresponding cDNA sequences in the C. reinhardtii 
expressed sequence tag (EST) database and RT-PCR, we de-

termined that the CaM-IP3 gene encodes a 1,115–amino acid 

protein that contains a predicted NADH dehydrogenase domain. 

This domain is found in both class I and II oxidoreductases as well 

Figure 1. Silver-stained gels of immunoprecipitation experiments using anti-
CaM antibodies and extracts isolated from wild-type, radial spokeless (pf14), 
and central pairless (pf18) axonemes as well as axonemes lacking both the 
outer dynein arms and inner arm isoform I1 (pf28pf30). The precipitates 
were resolved on either a 7% (top) or 12% (bottom) acrylamide gel. Central 
apparatus proteins are indicated by dots; spoke proteins are indicated by 
triangles. CaM-IP2, -IP3, and -IP4 are indicated by asterisks. The darkly 
stained bands are the heavy (HC) and light (LC) chains from the antibodies. 
CaM-IP2, -IP3, and -IP4 are precipitated from all of the mutant extracts tested, 
indicating that these polypeptides are not components of the radial spokes, 
central apparatus, outer dynein arms, or inner dynein arm I1.
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as NADH oxidases and peroxidases. The domain includes a small 

NADH-binding domain within a fl avin adenine dinucleotide–

binding domain and, thus, is thought to be involved in energy 

conversion. Searches of sequence databases reveal that the pre-

dicted human protein C20orf26 is most similar to CaM-IP3 

(E value of E = 6.8e-56), sharing 25% identity and 43% amino 

acid similarity along the entire length of the protein. The pre-

dicted molecular mass of CaM-IP3 is 118 kD, although the 

protein has an apparent molecular mass of �140 kD as judged 

by SDS-PAGE. The acidic isoelectric point of CaM-IP3 (4.76) 

may partially account for this discrepancy.

The identity of CaM-IP4 was determined from the amino 

acid sequence of fi ve peptides. Based on database searches, 

CaM-IP4 is also located on linkage group III and corresponds to 

FAP251. CaM-IP4 contains seven WD-40 repeats that com-

prise much of the N terminus of the protein. WD-40 repeats 

form propeller-like structures that serve as an interface for 

protein–protein interactions (Neer et al., 1994). In searches of 

sequence databases, a protein predicted from the Leishmania 

database (GenBank/EMBL/DDBJ accession no. XM811714; 

E value of E = 9e-53) is most similar to CaM-IP4 with 29% 

amino acid identity and 43% similarity along the entire length 

of this protein. CaM-IP4 is also 24% similar and 39% identical 

to a protein predicted from the human genome sequence (Gen-

Bank/EMBL/DDBJ accession no. BC036233; E value of E = 

6e-37). All of these polypeptides show similarity to micro-

tubule-associated protein–like 5 from echinoderms. In addition 

to the WD-40 repeats, each of these proteins has a putative EF-

hand domain at the C terminus. Although a motifs search does 

not predict an EF hand at the C terminus of CaM-IP4, the Inter-

ProScan algorithm provided by the European Molecular Biol-

ogy Laboratory predicts an EF hand–like domain.

CaM-IP2, -IP3, and -IP4 form a 
single complex
Based on CaM immunoprecipitation, it is possible that CaM-

IP2, -IP3, and -IP4 bind CaM individually, in subsets, or together 

to form a single complex. To differentiate among these possi-

bilities, we developed polyclonal antibodies in rabbits against 

either bacterially expressed protein fragments or synthetic pep-

tides for each of CaM-IP2, -IP3, and -IP4 (see Materials and 

methods). CaM-IP4 proved to be nonantigenic. However, we 

were successful in obtaining antibodies that specifi cally recog-

nize either CaM-IP2 or CaM-IP3 on Western blots (Fig. 2 A).

We then used these antibodies in immunoprecipitation 

experiments. Antibodies generated against CaM-IP3 failed to 

precipitate CaM-IP3. On the other hand, the CaM-IP2 antibody 

specifi cally precipitated CaM-IP2 as well as -IP3 and -IP4 from 

extracts isolated from radial spokeless axonemes (Fig. 2 B, 

middle lane). For extracts isolated from wild-type and pf18 

axonemes, additional polypeptides are precipitated by the 

CaM-IP2 antibodies that are not precipitated from extracts of the 

spokeless mutant pf14. Based on the molecular weights of these 

polypeptides (Yang et al., 2001) as well as their absence from 

precipitates of pf14 axonemal extracts, we suspected that these 

polypeptides were radial spoke components. Corresponding 

Western blots using antibodies generated against radial spoke 

protein 2 (RSP2) and RSP3 confi rm that RSPs are precipitated 

by the CaM-IP2 antibodies. The simplest interpretation of these 

Figure 2. CaM-IP2, -IP3, and -IP4 form a single complex that is associ-
ated with the radial spokes. (A) Western blots of axonemes (8 μg per lane) 
probed with antibodies generated against CaM-IP2 and -IP3. Both polypep-
tides are present in all axonemes in approximately equal amounts. (B) Silver-
stained gel (top) and corresponding Western blots (middle and bottom) of 
immunoprecipitation experiments using anti–CaM-IP2 antibodies and wild-
type, radial spokeless (pf14), and central pairless (pf18) axonemal extracts. 
CaM-IP2 antibodies precipitate the CaM-IP2, -IP3, and -IP4 complex 
(asterisks) as well as RSPs (triangles). Blots were probed with antibodies 
generated against CaM-IP2, -IP3, RSP2, or RSP3. These results indicate 
that CaM-IP2, -IP3, and -IP4 form a single complex that is associated with 
the radial spokes.

Table I. Proteins precipitated with anti-CaM antibodies

Name Predicted 
molecular mass

Apparent 
molecular mass

pI Similarities Flagellar 
proteome

Linkage 
group

CaM-IP2 ND 183 kD ND AAT-1, AKAP-binding 
 protein

FAP91 VII

CaM-IP3 118 kD 140 kD 4.8 pyridine-disulfi de 
 oxidoreductase domain

FAP61 III

CaM-IP4 97 kD 100 kD 7.4 WD repeats FAP251 III
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results is that CaM and CaM-IP2, -IP3, and -IP4 form a single 

complex that is associated with the radial spokes.

CaM-IP2 binds to RSP3
To provide further evidence that the CaM-IP2, -IP3, and -IP4 

complex is associated with the radial spokes, we investigated 

whether this complex cosediments with the radial spokes 

us ing sucrose density gradient centrifugation (Fig. 3). For axo-

nemal extracts isolated from wild-type fl agella, the polypep-

tides comprising the radial spokes cosediment at �20S (Yang 

et al., 2001). Western blots of corresponding gradient fractions 

reveal that CaM-IP2 and -IP3 cosediment with the radial 

spokes. For axonemal extracts isolated from fl agella that lack 

the spoke heads (pf17), the polypeptides comprising the spoke 

stalks cosediment at �15S (Yang et al., 2001). Western blots 

of corresponding gradient fractions from pf17 extracts reveal 

that CaM-IP2 and -IP3 also cosediment with the radial spoke 

stalks (Fig. 3 B). For axonemal extracts isolated from fl agella 

that completely lack the radial spokes (pf14), CaM-IP2 and -IP3 

cosediment as a smaller complex at �11S (Fig. 3 C). Although 

we do not have antibodies that recognize CaM-IP4, immuno-

precipitation experiments using sucrose gradient fractions con-

fi rm that CaM-IP4 also cosediments with CaM-IP2, -IP3, and 

-IP4 (Fig. S3, available at http://www.jcb.org/cgi/content/full/

jcb.200703107/DC1). These results support the hypothesis that 

CaM, CaM-IP2, -IP3, and -IP4 form a single complex that is 

associated with the spoke stalk.

As noted in our CaM-IP2 sequence analysis, CaM-IP2 

is most similar to AAT-1, which is thought to form a quater-

nary complex with an AKAP-binding protein. Based on previ-

ous reports that RSP3 is an AKAP (Gaillard et al., 2001), that 

RSP3 is located at the base of the radial spoke stalk (Diener 

et al., 1993), and our results that CaM-IP2 cosediments with the 

spoke stalk (this study), we hypothesized that CaM-IP2 binds 

to RSP3. To test this hypothesis, we used a gel overlay assay. 

Bacterially expressed proteins (CaM-IP2, CaM-IP3, and RSP3) 

were resolved by SDS-PAGE and transferred to nitrocellulose 

membrane. The membrane was then incubated with bacterially 

expressed C. reinhardtii RSP3, and the overlain protein was de-

tected by immunoblotting. As shown in Fig. 3 D, RSP3 binds 

only to CaM-IP2. These combined results indicate that CaM-

IP2, -IP3, and -IP4 are associated with the radial spoke stalk via 

interactions between CaM-IP2 and RSP3.

CaM binding is calcium sensitive
The association of CaM with specifi c proteins is regulated by 

the calcium-binding state of CaM. All immunoprecipitation 

experiments were performed using low calcium conditions. 

Therefore, the eight polypeptides we precipitated do not re-

quire calcium to form protein complexes with CaM. To inves-

tigate whether CaM binding of these polypeptides is calcium 

sensitive, we fi rst immunoprecipitated CaM from pf14 axo-

nemal extracts under low calcium conditions; the protein A 

beads were then washed using high calcium buffer (see Materials 

and methods). CaM remained associated with the beads, whereas 

CaM-IP2, -IP3, and -IP4 were selectively extracted in the 

presence of high calcium (Fig. 4 A). These results demonstrate 

that the binding of CaM-IP2, -IP3, and -IP4 to CaM is calcium 

sensitive. We also performed immunoprecipitation experi-

ments using the CaM-IP2 antibody under high calcium condi-

tions. All three members of the complex are precipitated by 

the CaM-IP2 antibody in extracts from spokeless axonemes, 

indicating that the complex does not dissociate under high 

calcium conditions (Fig. 4 B). In addition, the CaM-IP2 anti-

bodies precipitate the spokes from axonemal extracts isolated 

from either wild-type or central pairless axonemes, indicating 

that the complex does not dissociate from the spokes under 

high calcium conditions (Fig. 4 B).

Figure 3. CaM-IP2 is associated with RSP3. Western blots of extracts iso-
lated from wild-type (A), spoke headless (B; pf17), and spokeless (C; pf14) 
axonemes fractionated on sucrose gradients. Blots were probed with anti-
bodies generated against CaM-IP2, -IP3, RSP2, RSP3, or CaM. In extracts 
isolated from both wild-type or pf17 axonemes, CaM-IP2 and -IP3 cosedi-
ment with spoke stalk components. In extracts isolated from both pf17 and 
pf14 mutant axonemes, the sedimentation value for the CaM-IP2 complex 
is considerably lower than that in wild type. (D) Gel overlay of expressed 
RSP3. Bacterial extracts expressing fragments of CaM-IP2 (37 kD), -IP3 
(32 kD), -IP4 (60 kD), and RSP3-GST (110 kD) were resolved on polyacryl-
amide gels and either transferred to nitrocellulose (left) or stained with 
Coomassie blue (right). The membrane (left) was incubated with expressed 
RSP3 and probed with antibodies generated against RSP3. These results 
indicate that RSP3 binds to CaM-IP2.
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The association of CaM-IP2, -IP3, and -IP4 
with CaM is altered in DRC mutants
Our data are consistent with the localization of a CaM-containing 

complex at the base of the spokes. Previous studies have indi-

cated that the components of the dynein regulatory complex 

(DRC) localize to the doublet microtubules near the spokes 

(Piperno et al., 1992; Gardner et al., 1994; Nicastro et al., 2006). 

Therefore, we hypothesized that the CaM-IP2, -IP3, and -IP4 

complex may be disrupted in mutants lacking subsets of DRC 

components. To investigate this possibility, we precipitated the 

complex from axonemal extracts isolated from DRC mutants 

(pf2 and pf3) using either our anti-CaM or anti–CaM-IP2 anti-

bodies. The anti-CaM antibodies precipitate substantially less 

CaM-IP2, -IP3, and -IP4 from pf2 and pf3 axonemal extracts 

compared with that precipitated from wild-type extracts even 

though axonemes isolated from these mutants appear to have 

wild-type levels of CaM as judged by Western blotting (Fig. 5). 

These results suggest that the assembly of CaM-IP2, -IP3, and 

-IP4 is defective in DRC mutants. However, when we precipitate 

the complex using our anti–CaM-IP2 antibodies, the precipi-

tates from pf2 and pf3 are indistinguishable from that of wild 

type (Fig. 5). These results indicate that CaM-IP2, -IP3, and 

-IP4 assemble normally in DRC mutants but that their associa-

tion with CaM is disrupted.

Anti–CaM-IP2 antibodies restore dynein 
activity to mutant axonemes
Localization of the CaM-IP2, -IP3, and -IP4 complex at the 

base of the radial spokes, potentially near DRC components, 

suggested a possible role in modulating dynein-driven micro-

tubule sliding. Based on this localization, we hypothesized 

that regulation of dynein activity by this complex would occur 

downstream of regulatory signals derived from the radial spokes 

or central apparatus. To test this hypothesis, we conducted the 

microtubule sliding assay in the presence of the anti–CaM-IP2 

antibody. We initially tested whether the antibodies possessed 

any function-blocking activity using wild-type axonemes and 

a microtubule sliding assay (see Materials and methods). The 

anti–CaM-IP2 antibodies had no effect on microtubule sliding 

velocity (Fig. 6 A).

We then examined dynein activity in mutant axonemes. 

The fi rst mutant tested was the central pairless strain pf18; 

axonemes from this mutant have reduced dynein activity com-

pared with wild-type (Smith, 2002b). To our surprise, the anti–

CaM-IP2 antibody signifi cantly increases microtubule sliding 

velocity (P < 0.001 by t test; Fig. 6 A). In addition, the increase 

in velocity in central pairless axonemes is dependent on the 

concentration of the antibody, with maximal effect at 0.2 μM 

CaM-IP2 antibody (Fig. 6 B). Importantly, the increase in dy-

nein activity is not observed upon the addition of anti–CaM-IP3 

or anti-C1a32 antibodies (Wargo et al., 2005), further indicating 

that the effect is specifi c for binding of the anti–CaM-IP2 anti-

body. Based on these results and the hypothesis that the com-

plex affects dynein activity downstream of regulatory cues from 

the radial spokes, we predicted that addition of our antibodies to 

radial spokeless axonemes would also increase dynein activity. 

Indeed, addition of the CaM-IP2 antibodies to radial spokeless 

axonemes (pf14) signifi cantly increases dynein activity (P < 

0.001 by t test; Fig. 6 D). The simplest interpretation of these 

results is that the CaM-IP2, -IP3, and -IP4 complex is involved 

in modulating the activity of the dynein arms.

To determine whether specifi c subforms of axonemal 

dynein are the targets for modulation by this complex, we re-

peated the sliding microtubule experiments using mutants that 

lack specifi c dynein subforms. The CaM-IP2 antibodies have 

no effect on the sliding velocities of a mutant lacking the outer 

dynein arms (pf28; Fig. 6 C). Double mutants lacking both the 

Figure 4. Binding of CaM-IP2, -IP3, and -IP4 to CaM is calcium sensitive. 
(A) Silver-stained gel of CaM immunoprecipitation from radial spokeless 
axonemal extracts (pf14) followed by treatment with CaCl2 (top). After pre-
cipitation (CaM-IP), the protein A beads were washed twice with 2 mM 
CaCl2 (Ca2+1 and Ca2+2), and the resulting extract was loaded onto the 
gel. Proteins remaining (lane R) associated with the beads after the CaCl2 
wash were eluted with sample buffer. CaM-IP2, -IP3, and -IP4 (asterisks) 
are extracted from the beads. In contrast, the central pair proteins (dots) 
are not extracted with CaCl2. Western blots using anti-CaM antibodies 
(bottom) reveal that CaCl2 extracts very little CaM from the beads. These 
results indicate that binding of CaM-IP2, -IP3, and -IP4 to CaM is calcium 
sensitive. (B) Silver-stained gel of immunoprecipitation experiments per-
formed in 1 mM CaCl2 using anti–CaM-IP2 antibodies and wild-type, 
spokeless (pf14), and central pairless (pf18) axonemal extracts. The CaM-
IP2 antibodies precipitate the CaM-IP2, -IP3, and -IP4 complex (asterisks) 
and spokes (triangles), indicating that they do not dissociate from each 
other or the spokes in high calcium buffer conditions.



JCB • VOLUME 179 • NUMBER 3 • 2007 520

central apparatus and outer dynein arms (pf18pf28) or radial 

spokes and outer dynein arms (pf14pf28) have shorter length 

fl agella than wild type, and many of the isolated axonemes fail 

to undergo microtubule sliding in this assay. However, for those 

pf18pf28 axonemes in which microtubule sliding occurred, 

velocities doubled upon addition of the CaM-IP2 antibodies 

(Fig. 6 C). These velocities are signifi cantly lower than those of 

pf28 (P < 0.001 by t test). The CaM-IP2 antibodies had no ef-

fect on the sliding velocity of pf14pf28 axonemes. These results 

indicate that the outer dynein arms may be one of but not the 

exclusive targets of regulation by the CaM complex. Therefore, 

we also compared dynein activity in double mutants lacking 

various inner dynein arm subforms.

Addition of the CaM-IP2 antibody restored dynein activ-

ity in mutant axonemes lacking the central apparatus and the 

I2 inner arms (pf18ida4; Fig. 6 D; Piperno et al., 1992), which 

are also known as fast protein liquid chromatography fractions 

a, c, and d (Kagami and Kamiya, 1992; Porter et al., 1992). 

The CaM-IP2 antibodies increased sliding velocities of pf18ida4 

axonemes to levels not signifi cantly different (P > 0.22 by t test) 

from those of pf18 axonemes incubated with CaM-IP2 antibody. 

These results suggest that the I2 inner arms are not the targets of 

regulation by this complex.

The pf30 and ida1 mutants lack the inner arm I1 or fraction f 

heavy chains (Piperno et al., 1990; Kagami and Kamiya, 1992; 

Porter et al., 1992). Addition of the CaM-IP2 antibodies to 

axonemes isolated from the pf14pf30 mutant that lack the spokes 

and the I1 inner dynein arm failed to increase dynein activity 

(Fig. 6 D). These results indicate that I1 is a target for regulation 

by this complex. We previously reported that double mutants 

lacking I1 and the central apparatus (pf18ida1) have micro-

tubule sliding velocities that are signifi cantly greater than those 

of pf18 axonemes (P < 0.001 by t test; Smith, 2002b). The loss of 

I1 from central pairless mutants partially relieves the inhibition 

of microtubule sliding in central apparatus–defective mutants. 

However, sliding velocities of pf18ida1 are also signifi cantly 

lower than those of pf18 axonemes exposed to the CaM-IP2 anti-

bodies (P < 0.001 by t test; Fig. 6 D). Addition of the CaM-IP2 

antibodies to pf18ida1 mutant axonemes failed to increase dynein 

activity to wild-type levels. These combined results support the 

hypothesis that the CaM-IP2, -IP3, and -IP4 complex plays a 

role in modulating the activity of inner dynein arm I1.

Previous studies have indicated that reduced sliding ve-

locities in central pairless and radial spokeless mutants is corre-

lated with the phosphorylation state of the IC138 intermediate 

chain of the I1 inner dynein arm (Habermacher and Sale, 1996, 

1997; King and Dutcher, 1997; Yang and Sale, 2000; Hendrickson 

et al., 2004). Reducing the phosphorylation of IC138 using ki-

nase inhibitors results in increased sliding velocities in these 

mutants (Habermacher and Sale, 1997; Yang and Sale, 2000; 

Smith, 2002b). Therefore, we hypothesized that addition of the 

CaM-IP2 antibodies to mutant axonemes may result in reduced 

IC138 phosphorylation and, therefore, increased dynein activity. 

Using antibodies generated against IC138, we performed West-

ern blots of isolated axonemes in the presence or absence of 

CaM-IP2 antibodies (Fig. 7). Phosphorylated forms of IC138 

have been detected on Western blots of radial spoke– and cen-

tral apparatus–defective axonemes as slower migrating species 

that are not present when samples are treated with phosphatase 

(Hendrickson et al., 2004). We do not detect any decrease in the 

overall phosphorylation state of IC138 in either radial spokeless 

(pf14) or central pairless (pf18) axonemes upon the addition 

of anti–CaM-IP2 antibodies. These results suggest that the 

CaM-IP2 antibodies do not increase dynein activity by affecting 

the phosphorylation state of I1 IC138. Alternatively, the phos-

phorylation state of specifi c residues may be affected that can-

not be detected by Western blotting.

Discussion
Our previous studies demonstrated that calcium control of 

motility involves the regulation of dynein-driven microtubule 

sliding and that CaM is a key axonemal calcium sensor (Smith, 

2002a,b; Wargo et al., 2004). Using a combination of biochem-

ical and functional approaches, we have identifi ed a protein com-

plex that exhibits calcium-sensitive CaM binding, localizes to 

Figure 5. Association of the CaM-IP2 complex with CaM is dis-
rupted in DRC mutants. (A) Silver-stained gel of immunoprecipitates 
using either anti-CaM or anti–CaM-IP2 antibodies and axonemal 
extracts isolated from wild-type (wt), spokeless (pf14), or DRC mu-
tant (pf2 and pf3) axonemes. Compared with wild-type and pf14 
precipitates, the CaM-IP2 complex is substantially reduced in pre-
cipitates of pf2 and pf3 extracts using the anti-CaM antibodies. 
However, immunoprecipitation using the anti–CaM-IP2 antibodies 
indicates that relatively equal amounts of CaM-IP2, -IP3, and -IP4 
(asterisks) are precipitated in wild-type, pf2, and pf3 axonemes. 
(B) Western blot of isolated axonemes using anti-CaM antibodies. 
The pf2 and pf3 mutant axonemes have wild-type levels of CaM. 
These combined results indicate that association of the CaM-IP2 
complex with CaM is disrupted in DRC mutants.
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the base of the radial spokes, and plays an important role in 

modulating dynein-driven microtubule sliding. This discovery 

represents an important step toward defi ning a molecular mech-

anism for control of ciliary and fl agellar motility.

The identities of CaM-IP2, -IP3, and -IP4 
suggest a role in regulating motility
Three polypeptides precipitated by anti-CaM antibodies form 

a distinct complex with CaM and were tentatively named 

CaM-IP2, -IP3, and -IP4. Based on the amino acid identities of 

these polypeptides and searches of the C. reinhardtii fl agellar 

proteome, we determined that CaM-IP2, CaM-IP3, and CaM-

IP4 correspond to FAP91, FAP61, and FAP251, respectively 

(Pazour et al., 2005). Potential mammalian homologues for each 

of these proteins were found in searches of sequence databases, 

indicating that this complex is not unique to C. reinhardtii. Most 

notably, CaM-IP2 (FAP91) is most similar to AAT-1, a protein 

originally identifi ed as a testis-specifi c protein that interacts 

with AMY-1 (a c-myc–binding protein), an AKAP, and two 

regulatory (RII) subunits of PKA (cAMP-dependent protein 

kinase; Yukitake et al., 2002). Based on gel overlay assays, we 

have shown that CaM-IP2 binds to an AKAP (RSP3; Gaillard 

et al., 2001); however, none of the members of this complex ap-

pear to be AMY-1 or RII homologues. AAT-1α, a small splice 

variant of AAT-1, has been localized to mature sperm and ap-

pears concentrated in the sperm midpiece region (Matsuda et al., 

2005). Matsuda et al. (2005) suggest that AAT-1α may be asso-

ciated with mitochondria, but the precise localization of AAT-1α 

within sperm has not yet been determined.

In addition to AAT-1α, Matsuda et al. (2005) report the 

presence of several splice variants of AAT-1 expressed in vari-

ous tissues, some of which have cells that possess cilia/fl agella 

and some of which do not. The authors propose that AAT-1 

may participate in additional cellular functions as well as sperm 

development. Northern blots of RNA isolated from C. reinhardtii 
cells before and after defl agellation reveal that C. reinhardtii 

Figure 6. CaM-IP2 modulates dynein-driven 
microtubule sliding. (A) Microtubule sliding veloc-
ities of wild-type and pf18 axonemes. The CaM-
IP2 (IP2) antibodies have no effect on the sliding 
velocity of wild-type axonemes. In contrast, slid-
ing velocities of pf18 axonemes increase upon 
addition of the CaM-IP2 antibody. This increase 
is not observed in the presence of C1a-32 (C1a; 
Wargo et al., 2005) or CaM-IP3 (IP3) antibodies. 
(B) Microtubule sliding velocities of pf18 axo-
nemes incubated with varying concentrations 
of CaM-IP2 antibody. The increase in dynein 
activity is dose dependent, with a maximal in-
crease in velocity at 0.2 μM CaM-IP2 antibody. 
(C) Microtubule sliding velocities of mutants lack-
ing the outer dynein arms (pf28), outer dynein 
arms and the central apparatus (pf18pf28), and 
outer dynein arms and spokes (pf14pf28) in 
the presence (IP2; patterned bars) and absence 
(black bars) of the CaM-IP2 antibody. (D) Slid-
ing velocities of a mutant lacking the central 
pair and I2 inner arm heavy chains (pf18ida4) 
increase upon the addition of anti–CaM-IP2 
antibodies. Velocities of a mutant lacking the 
central apparatus and the I1 inner dynein arm 
(pf18ida1) are signifi cantly higher than veloci-
ties of pf18 (P < 0.001 by t test). However, slid-
ing velocities of pf18ida1 axonemes incubated 
with CaM-IP2 antibodies are signifi cantly lower 
than those of pf18 incubated with CaM-IP2 anti-
bodies (P < 0.001 by t test). Sliding velocities of 
a radial spokeless mutant (pf14) increase upon 
the addition of anti–CaM-IP2 antibodies (IP2). 
However, the addition of CaM-IP2 antibodies to 
axonemes that lack the radial spokes and inner 
dynein arm I1 (pf14pf30) have no effect on slid-
ing velocity. All bars represent the mean of >70 
measurements ± SEM (error bars) from three or 
more independent experiments. (E) Summary of 
microtubule sliding experiments. The CaM-IP2, 
-IP3, and -IP4 complex (purple) is localized to the 
base of the spoke (blue).
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possesses a single CaM-IP2 transcript that increases in abun-

dance after defl agellation. Therefore, in C. reinhardtii, CaM-IP2 

is most likely present in a single isoform that primarily local-

izes to the fl agellum. The presence of multiple splice variants 

of axonemal proteins in mammals, which are not observed for 

their C. reinhardtii homologues, has been previously reported 

(Zhang et al., 2002).

The fact that CaM-IP2 is associated with both CaM and 

an AKAP (RSP3) raises the intriguing possibility that this com-

plex may play a role in integrating the calcium- and cAMP-

mediated signaling pathways to produce particular changes in 

motility. Yukitake et al. (2002) found that mammalian AAT-1α 

weakly stimulated the activity of PKA and that AAT-1α itself 

was phosphorylated by PKA in vivo and in vitro. Although bona 

fi de PKA homologues are not represented in the C. reinhardtii 
fl agellar proteome, several AKAPS as well as proteins with 

domains similar to the PKA RII subunit have been identifi ed 

(Gaillard et al., 2001; Yang et al., 2006). In addition, pharma-

cological and functional studies have implicated a role for PKA 

in modulating motility (Howard et al., 1994; Habermacher and 

Sale, 1995, 1997; Gaillard et al., 2006). We are currently in-

vestigating whether CaM-IP2 is posttranslationally modifi ed 

in vivo in C. reinhardtii.
The presence of an NADH dehydrogenase domain in 

CaM-IP3 (FAP61) is suggestive of a role for this protein in energy 

conversion. This domain is found in oxidoreductases as well as in 

NADH oxidases and peroxidases. Wakabayashi and King (2006) 

have recently shown that in C. reinhardtii, motility changes that 

occur in response to light are altered by oxidative/reductive stress 

and that this effect is mediated by the redox poise of the outer 

dynein arms (Wakabayashi and King, 2006). Given that motility 

changes in response to light are generally preceded by changes 

in intrafl agellar calcium, that CaM-IP3 is part of a complex that 

contains CaM, and that CaM-IP3 possesses an NADH dehydro-

genase domain, one possibility is that CaM-IP3 plays a role in 

mediating calcium-induced changes in the fl agellar redox state 

that affect the activity of the outer dynein arms.

CaM-IP2, -IP3, and -IP4 form a CaM- and 
spoke-associated complex
The conclusion that the CaM-IP2, -IP3, and -IP4 complex is 

associated with and localizes to the base of the radial spokes is 

based on the following observations. First, antibodies raised 

against CaM-IP2 precipitate all members of this complex as 

well as the radial spokes. Second, the complex cosediments 

with the radial spokes and spoke stalks on sucrose gradients 

of axonemal extracts. Finally, gel overlay assays using recom-

binant RSP3 reveal that RSP3 binds specifi cally to CaM-IP2. 

Previous studies have shown that mutations in RSP3 (pf14) re-

sult in the failure of the entire radial spoke to assemble (Huang 

et al., 1981) and that recombinant RSP3 binds to pf14 axonemes 

(Diener et al., 1993). Therefore, RSP3 is predicted to localize 

to the base of the spoke and serve as a point of stalk attachment 

to the axonemal microtubule. Based on the clear association of 

the CaM-IP2, -IP3, and -IP4 complex with both CaM and the 

radial spokes, we propose to use the acronym CSC (CaM- and 

spoke-associated complex) to refer to this complex.

Given that the CSC is associated with the radial spokes 

in wild-type axonemal extracts, it may seem surprising that this 

complex was not identifi ed in analyses of the radial spoke pro-

teome (Yang et al., 2006). However, two important factors indi-

cate that this complex is not part of the spoke structures. First, 

the pf14 mutation results in the complete failure of the spokes 

to assemble; therefore, comparisons of polypeptides lacking in 

this mutant with those present in wild-type axonemes have his-

torically defi ned radial spoke components (Huang et al., 1981; 

Piperno et al., 1981). Because we initially identifi ed this com-

plex in immunoprecipitation experiments using axonemal ex-

tracts isolated from pf14 axonemes, its presence in this mutant 

would eliminate the possibility that it is part of the radial spoke 

structure. Second, although candidate spots possibly correspond-

ing to these proteins are visible on the two-dimensional gels of 

isolated spokes by Yang et al. (2001), they are clearly present in 

substoichiometric amounts relative to other spoke components. 

Therefore, if these spots are in fact CSC components, it is pos-

sible that not every spoke is associated with a CSC. Given their 

presence in spokeless mutants and the fact that they may be pres-

ent in substoichiometric amounts relative to spoke proteins, the 

CSC polypeptides do not appear to be components of the spoke 

structures. Experiments are currently underway to defi ne the pre-

cise stoichiometry of this complex to radial spokes as well as their 

more precise localization within the axoneme.

Based on the apparent localization of the CSC to the 

base of the spokes, the mutant phenotype for members of this 

Figure 7. Western blots of isolated axonemes 
(10 𝛍g/lane) probed with antibodies gener-
ated against the I1 intermediate chain IC138. 
Intermediate chain IC138, left. As indicated, 
some axoneme samples were treated with ei-
ther anti–CaM-IP2 or anti–C1a-32 antibodies 
(C1a; Wargo et al., 2005) in the presence or 
absence of calf intestinal alkaline phosphatase 
(CIP). In the absence of calf intestinal alkaline 
phosphatase treatment, IC138 appears hyper-
phosphorylated in both central pairless (pf18) 
and spokeless (pf14) axonemes compared with 
wild type. No observable difference in phos-
phorylation is detected after the addition of 
CaM-IP2 antibodies. The 120–150-kD molecular 
mass range of Coomassie blue–stained gels of 
the same samples are shown as a loading con-
trol (right).
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complex might predictably include defects in radial spoke 

assembly. In fact, CaM-IP3 and -IP4 map to linkage group III 

near the pf5 mutation, and the pf5 mutant is defective for radial 

spoke assembly (Huang et al., 1981). We have sequenced the 

genes encoding CaM-IP3 and -IP4 from genomic DNA iso-

lated from the pf5 mutant and found no mutations in either gene 

(unpublished data). In addition, we have screened several avail-

able insertional mutant libraries for mutations in the members of 

this complex and found no candidate mutants. Finally, we have 

made numerous attempts at knocking down expression levels 

by RNA-mediated interference for both CaM-IP2 and -IP3 and 

have not obtained a stable mutant with reduced transcript levels 

for either gene. Therefore, the mutant phenotype for any mem-

ber of this complex remains unknown.

The CSC regulates dynein-driven 
microtubule sliding
Using a microtubule sliding assay, we have demonstrated that 

the CSC plays a role in regulating dynein-driven microtubule 

sliding. This conclusion is based on the observation that the ad-

dition of antibodies raised against CaM-IP2 specifi cally restores 

dynein activity to axonemes that lack either the central apparatus 

or the radial spokes. Importantly, the increase in dynein activity 

is not observed upon the addition of antibodies raised against 

CaM-IP3 or C1a32, and the CaM-IP2 antibody effect is satu-

rable. Therefore, the increase in dynein activity is not caused by 

particular buffer or rabbit serum components that may remain 

after affi nity purifi cation; rather, the increase in dynein activity 

is specifi c for binding of the anti–CaM-IP2 antibody.

The challenge now is to determine the mechanism by 

which the CSC regulates dynein activity. One possibility is that 

the CSC directly mediates regulatory signals from the radial 

spokes to the dynein arms. A second possibility is that the CSC 

mediates regulatory signals via the DRC. The DRC is com-

prised of seven polypeptides that were discovered through ge-

netic and biochemical analyses of mutants that, when combined 

with central apparatus or radial spoke defect mutations, restored 

motility without restoring the missing structures (Huang et al., 

1982; Piperno et al., 1992). The polypeptides comprising the 

DRC have been localized near the base of the spokes (Gardner 

et al., 1994; Nicastro et al., 2006). However, little is know about 

their identities or their function in regulating dynein (Rupp and 

Porter, 2003).

In these experiments, we have discovered that the two 

mutants that defi ne the DRC, pf2 and pf3, assemble wild-type 

levels of CSC components. However, only a small fraction of 

the CSC is associated with CaM. Our working hypothesis is that 

CaM association or dissociation with the CSC plays a role in 

modulating dynein activity. To determine whether the CSC in-

teracts with DRC components or specifi c subunits of dynein 

arms will require the generation of additional reagents targeted 

to these polypeptides.

Regardless of the mechanism for CSC modulation of dy-

nein activity, our data indicate that specifi c dynein subforms are 

affected (summarized in Fig. 6 E). Our antibodies either fail to 

increase dynein activity or only modestly increase dynein ac-

tivity in mutants lacking the outer dynein arms. In addition, 

our antibodies do not increase dynein activity in double mutants 

lacking the I1 inner dynein arm. In contrast, the CaM-IP2 

antibodies fully restore dynein activity to mutants that lack the 

I2 (fraction a, c, and d) inner arm heavy chains. Collectively, 

these results indicate that the I1 inner dynein arm as well as the 

outer dynein arms may be targets of regulation by the CSC.

In light of these results, it is interesting to note that in 

recent structural experiments, Nicastro et al. (2006) have ob-

served a structural linkage between the inner dynein arm I1 and 

the outer dynein arms. In addition, work from several labora-

tories have indicated that inner dynein arm I1 is an important 

regulatory target for modulating dynein-driven microtubule 

sliding and that this modulation includes phosphorylation of 

the I1 IC138 intermediate chain (Habermacher and Sale, 1996, 

1997; King and Dutcher, 1997; Yang and Sale, 2000; Hendrickson 

et al., 2004). Some I1-defective mutants can act as weak sup-

pressors of paralysis for particular central apparatus–defective 

mutants (Porter et al., 1992). Importantly, some I1-defective 

mutants are defi cient in their phototaxis response (King and 

Dutcher, 1997; Okita et al., 2005). Our results indicate that the 

overall phosphorylation state of IC138 does not change in either 

radial spokeless or central pairless mutants upon addition of the 

CaM-IP2 antibodies. Therefore, the increase in dynein activ-

ity we observe upon addition of our antibodies may involve a 

mechanism that does not alter IC138 phosphorylation. Alter-

natively, addition of these antibodies may ultimately result in 

changes in the phosphorylation of specifi c IC138 residues that 

we cannot detect by Western blotting.

An additional challenge is to determine what role the 

binding of Ca2+ to CaM plays in CSC-mediated changes in 

dynein activity. We have previously shown that high calcium 

buffer increases dynein activity in central pairless mutants but 

not spokeless mutants and that CaM is a key calcium sensor 

(Smith, 2002a). In the present study, we report the discovery of a 

CaM-containing complex that exhibits calcium-sensitive CaM 

binding. What we do not know is whether Ca2+-CaM release from 

the CSC accounts for the increased dynein activity of central 

pairless mutants in high calcium conditions. Interestingly, anti-

bodies generated against one member of this complex increase 

dynein activity in both central pairless and spokeless axonemes 

in low calcium conditions. Is there a functional relationship be-

tween antibody binding to the CSC and high calcium condi-

tions? Our observations that the CaM-IP2 antibody increases 

dynein activity in mutants in which high calcium has no effect 

(pf14) suggests that the antibody acts downstream of high cal-

cium in a signal transduction pathway. A second possibility is 

that high calcium affects additional axonemal targets that are 

missing in these mutants, and these possibilities are not mutu-

ally exclusive. For example, CaM is a component of both the 

central apparatus (Wargo et al., 2005) and radial spokes (Yang 

et al., 2001), and several calcium-binding proteins, including 

centrin, are associated with the dynein arms (for a complete list 

of both known and putative calcium-binding proteins in fl agella, 

see Pazour et al., 2005).

To fully elucidate the mechanism by which the CSC par-

ticipates in signal transduction pathways that modulate dynein 

activity will require precisely localizing the CSC relative to the 
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radial spokes and DRC, determining the stoichiometry of CSC 

components relative to each other and the radial spokes, identi-

fying additional CSC interactors (potentially including polypep-

tides comprising the DRC or dynein arms), and determining the 

effects of calcium on the CSC modulation of dynein activity.

Materials and methods
C. reinhardtii strains
Strain A54-e18 (nit1-1, ac17, sr1, mt+), the wild-type strain for motility 
and axoneme structure, was obtained from P. Lefebvre (University of 
Minnesota, St Paul, MN). The central pair–defective strain pf18, the radial 
spoke–defective strains pf17 and pf14, and the dynein-defective strains 
pf2, pf3, ida1, ida4, and pf28 were obtained from the C. reinhardtii 
Genetics Center (Duke University). The pf30pf28, pf14pf28, and pf14pf30 
strains were obtained from W. Sale (Emory University, Atlanta, GA). Gen-
eration of the double mutants pf18pf28 and pf18ida1 have been previ-
ously described (Smith, 2002b). The double mutant pf18ida4 was selected 
from nonparental ditype tetrads. All cells were grown in constant light in 
Tris acetate phosphate media (Gorman and Levine, 1965).

Preparation of fl agella, fl agellar extracts, and sucrose gradients
Flagella were severed from cell bodies by the dibucaine method (Witman, 
1986) and isolated by differential centrifugation in NaLow (10 mM Hepes, 
pH 7.4, 5 mM MgSO4, 1 mM DTT, 0.5 mM EDTA, and 30 mM NaCl). 
Axonemes were isolated by adding NP-40 (Calbiochem) to fl agella for a fi nal 
concentration of 0.5% (wt/vol) to remove fl agellar membranes. Axonemes 
were initially extracted in NaHigh (10 mM Hepes, pH 7.4, 5 mM MgSO4, 
1 mM DTT, 0.5 mM EDTA, and 0.6 M NaCl) at a concentration of 6 mg/ml 
on ice for 20 min. The axonemes were pelleted, resuspended in NaHigh, 
and immediately pelleted again. The supernatant was discarded, and the 
pellet was extracted with KI (10 mM Hepes, pH 7.4, 5 mM MgSO4, 1 mM 
DTT, 0.5 mM EDTA, 30 mM NaCl, and 0.5 M KI) at a concentration of 
12 mg/ml for 30 min on ice. This extract is referred to as the KI extract 
or high salt extract. KI extracts were dialyzed against NaLow buffer and 
clarifi ed by centrifugation at 12,000 relative centrifugal force for 10 min. 
For some experiments, the clarifi ed extracts were loaded onto 5–20% 
sucrose gradients and subjected to ultracentrifugation at 35,000 rpm for 
16 h in an SW41Ti rotor (Beckman Coulter). 0.5-ml fractions were collected 
from the bottom of the tube and prepared for SDS-PAGE.

Immunoprecipitation
Immunoprecipitation was performed according to Wargo et al. (2005) 
with the following modifi cations. 150 μl KI axonemal extract was incu-
bated with �40 μg of affi nity-purifi ed anti-CaM or anti-IP2 antibody. After 
four washes with TBST150 (150 mM NaCl, 50 mM Tris-HCl, and 0.5 mM 
EDTA, pH 7.5), beads were resuspended in 90 μl TBST150 and 50 μl of 
5× SDS-PAGE sample buffer. For experiments performed in high calcium, 
a fi nal concentration of 1 mM CaCl2 was included in the TBST150 buffer, 
and all washes were performed with TBST150 + 1 mM CaCl2. For immuno-
precipitation performed in low calcium conditions followed by a fi nal high 
calcium wash, the beads were washed as before with TBST150, and then 
the beads were suspended in 100 μl TBST150 with 2 mM CaCl2. The beads 
were rotated for 5 min at RT and briefl y spun, and the supernatant was 
transferred to a new tube. 100 μl TBST150 was added to the remaining 
beads, and all samples were prepared for SDS-PAGE gels. For immuno-
precipitation using sucrose gradient fractions, 50–80 μg of antibody was 
used with 1,200 μl of pooled sucrose gradient fractions. The sample was 
mixed for 5–8 h and washed with four 1-ml vol of TBS-T150.

Mass spectrometry and sequence analysis
Gel bands were excised from Coomassie-stained gels. These bands were 
analyzed by matrix-assisted laser desorption/ionization–time of fl ight 
mass spectrometry with postsource decay conducted at the University 
of Massachusetts Medical School or liquid chromatography/liquid 
chromato graphy–electrospray ionization mass spectrometry performed at 
the Harvard Microchemistry and Proteomics Facility. Comparisons of pep-
tide masses with translated genomic or EST sequences were made using 
the BLAST algorithm at the National Center for Biotechnology Information 
and the Chlamydomonas genome database (version 3.0; http://genome
.jgi-psf.org/Chlre3/Chlre3.home.html). Searches of the fl agellar pro-
teome (Pazour et al., 2005) were performed using http://labs.umassmed
.edu/chlamyfp/index.php.

The coding sequence for each polypeptide was confi rmed by RT-PCR. 
RNA was isolated from wild-type C. reinhardtii cells before and after 
pH shock–induced defl agellation according to Wilkerson et al. (1994). 
PolyA enrichment was performed using the Oligotex mRNA kit (QIAGEN) 
according to the manufacturer’s instructions. Reverse transcription was per-
formed using either Superscript II or III (Invitrogen) according to the manu-
facturer’s instructions. Subsequent PCRs were performed using primers 
based on the known or predicted coding regions as determined by EST, 
EST contig, or mass spectrometry data.

Peptide and antibody production
The CaM peptide and corresponding antibodies as well as the anti-C1a32 
antibodies were generated as described previously (Wargo et al., 2005). 
For CaM-IP2, the fi rst 680 bp of the coding sequence was cloned into the 
pET30 vector and transformed into BL21 (DE3) pLysS cells. Protein ex-
pression was induced by the addition of IPTG, and the expressed protein 
was purifi ed from bacterial cell lysates using a Ni2+-resin column accord-
ing to the manufacturer’s protocol (Novagen). For CaM-IP3 antibodies, a 
C-terminal peptide (C Z T H A Q D A V L E F A R A H A A E ) was synthesized and con-
jugated to keyhole limpet hemocyanin (Aves Labs, Inc.). For both CaM-IP2 
and -IP3, polyclonal antibodies were generated in rabbits against the puri-
fi ed protein or peptide at Spring Valley Laboratories. Antibodies were 
affi nity purifi ed on Sulfolink columns (Pierce Chemical Co.) according to 
the manufacturer’s protocol. Columns contained purifi ed expressed protein 
(CaM-IP2) or purifi ed peptide (CaM-IP3).

Gel electrophoresis, Western blots, and silver-stained gels
For immunoblots, equivalent loads of fl agella (8 mg/ml), axonemes, ex-
tracts, and/or extracted axonemes were subjected to SDS-PAGE using 7% 
polyacrylamide gels. Gels were transferred to polyvinylidene difl uoride 
(Immobilon P; Millipore). CaM Western blots were performed as previ-
ously described (Wargo et al., 2005). For CaM-IP2 and -IP3 Western anal-
yses, 7% polyacrylamide gels were subject to SDS-PAGE and transferred 
for 1 h to polyvinylidene difl uoride (Immobilon P; Millipore). Membranes 
were blocked for 1 h in 2% BSA (regular fraction V; A-7906; Sigma-
Aldrich) in TBST (0.1% Tween and TBS, pH 7.5). For primary antibody 
incubations, affi nity-purifi ed anti–CaM-IP2 or anti–CaM-IP3 antibodies 
were diluted 1:100 or 1:5,000, respectively, and anti-RSP2 or anti-RSP3 
antibodies (provided by D. Diener, Yale University, New Haven, CT) were 
diluted 1:5,000 in TBST. Primary antibody incubations were conducted for 
2 h at RT or overnight at 4°C. Membranes were washed three times for 
5 min with TBST, incubated with anti–rabbit HRP secondary antibodies 
(GE Healthcare), and diluted 1:30,000 in TBST. After four 5-min washes 
with TBST, the ECL Plus Western Blotting kit (GE Healthcare) was used for 
chemiluminescent detection. Gels were silver stained according to the 
methods described in Wargo et al. (2005).

For anti-IC138 Western blots, axonemes isolated from wild type, 
pf14, and pf18 were resuspended at 1 mg/ml in pCa8 or pCa4 buffer 
containing 1 mM ATP. For some samples, 50 μg of axonemes were treated 
with 4 μg of affi nity pure anti–CaM-IP2 or 4 μg of affi nity pure anti–C1a-
32 antibodies (Wargo et al., 2005). For samples that were treated with 
calf intestine alkaline phosphatase (Roche), the axonemes were incubated 
with 0.75 U of calf intestine alkaline phosphatase for 30 min at RT. 10 μg 
axonemal proteins were resolved on a 5% polyacrylamide gel and trans-
ferred to nitrocellulose. Blots were incubated with anti-IC138 (1:10,000 in 
TBST) overnight at 4°C. After washing, blots were incubated for 45 min 
with anti–rabbit HRP in TBST, washed, and incubated with ECL Plus for 
detection. The IC138 antibodies were provided by W. Sale.

Blot overlay
RSP3-GST (provided by W. Sale) was expressed and purifi ed on a GST-
resin column (Novagen) according to the manufacturer’s protocol. The N 
terminus of CaM-IP2 was expressed and purifi ed as described in Peptide 
and antibody production. For CaM-IP3, DNA sequence encoding the 
C-terminal 220 amino acids was cloned into pET30 and transformed into 
BL21 (DE3) pLysS cells. For CaM-IP4, 1.8 kb of DNA sequence encoding 
amino acids 1–580 was cloned into the pET30 vector. Expression was 
induced with IPTG, and proteins were purifi ed from bacterial cell lysates 
using a Ni2+-resin column (Novagen). For SDS-PAGE, 15 μg CaM-IP2 
(37 kD), 15 μg CaM-IP3 (32 kD), 15 μg CaM-IP4 (62 kD), and 25 μg 
RSP3-GST (110 kD) were resolved on a 12% polyacrylamide gel and trans-
ferred for 40 min to nitrocellulose membrane. Membranes were blocked 
overnight at 4°C in 5% milk/TBST (0.1% Tween) and were incubated with 
40 μg/ml RSP3-GST in 1% BSA/TBST for 2 h at RT. After three 5-min TBST 
washes, membranes were incubated with anti-RSP3 (1:5,000) in TBST for 
1 h and with secondary antibody (anti–rabbit HRP; GE Healthcare) diluted 
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1:30,000 in TBST for 30 min. The ECL Plus Western Blotting kit (GE Health-
care) was used for detection.

Microtubule sliding
Flagella were severed from cell bodies by the dibucaine method (Witman, 
1986) and isolated by differential centrifugation in buffer A (10 mM 
Hepes, pH 7.4, 5 mM MgSO4, 1 mM DTT, 0.5 mM EDTA, and 50 mM 
potassium acetate). Axonemes were isolated by adding NP-40 (Calbiochem) 
to fl agella for a fi nal concentration of 0.5% (wt/vol) to remove fl agellar 
membranes. Measurement of sliding velocity between doublet microtubules 
was based on the methods of Okagaki and Kamiya (1986). Microtubule 
sliding was initiated with buffer A containing 1 mM ATP and 2 μg/ml type 
VIII protease (Sigma-Aldrich) and was recorded as described previously 
(Smith, 2002a). All data are presented as mean ± SEM. The t test was 
used to determine the signifi cance of differences between means. For some 
experiments, axonemes were incubated with affi nity-purifi ed anti–CaM-IP2 
antibodies for 15 min at room temperature (22°C) before the induction of 
sliding. Antibody concentrations are noted on corresponding fi gures and 
are estimates based on the conversion factor of IgG = 150,000 g/mol.

Online supplemental material
Fig. S1 shows an amino acid sequence comparison of CaM-IP2 and 
human AAT-1. Fig. S2 shows Northern blots comparing transcript levels of 
CaM-IP2 and RSP3 before and after defl agellation. Fig. S3 shows Western 
blots of sucrose gradient fractions and immunoprecipitation experiments of 
corresponding pooled fractions. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200703107/DC1.
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