1,389 research outputs found

    Exact Path Integrals by Equivariant Cohomology

    Full text link
    It is a common belief among field theorists that path integrals can be computed exactly only in a limited number of special cases, and that most of these cases are already known. However recent developments, which generalize the WKBJ method using equivariant cohomology, appear to contradict this folk wisdom. At the formal level, equivariant localization would seem to allow exact computation of phase space path integrals for an arbitrary partition function! To see how, and if, these methods really work in practice, we have applied them in explicit quantum mechanics examples. We show that the path integral for the 1-d hydrogen atom, which is not WKBJ exact, is localizable and computable using the more general formalism. We find however considerable ambiguities in this approach, which we can only partially resolve. In addition, we find a large class of quantum mechanics examples where the localization procedure breaks down completely.Comment: LATE

    A forensic acquisition and analysis system for IaaS

    Get PDF
    Cloud computing is a promising next-generation computing paradigm that offers significant economic benefits to both commercial and public entities. Furthermore, cloud computing provides accessibility, simplicity, and portability for its customers. Due to the unique combination of characteristics that cloud computing introduces (including on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service), digital investigations face various technical, legal, and organizational challenges to keep up with current developments in the field of cloud computing. There are a wide variety of issues that need to be resolved in order to perform a proper digital investigation in the cloud environment. This paper examines the challenges in cloud forensics that are identified in the current research literature, alongside exploring the existing proposals and technical solutions addressed in the respective research. The open problems that need further effort are highlighted. As a result of the analysis of literature, it is found that it would be difficult, if not impossible, to perform an investigation and discovery in the cloud environment without relying on cloud service providers (CSPs). Therefore, dependence on the CSPs is ranked as the greatest challenge when investigators need to acquire evidence in a timely yet forensically sound manner from cloud systems. Thus, a fully independent model requires no intervention or cooperation from the cloud provider is proposed. This model provides a different approach to a forensic acquisition and analysis system (FAAS) in an Infrastructure as a Service model. FAAS seeks to provide a richer and more complete set of admissible evidences than what current CSPs provide, with no requirement for CSP involvement or modification to the CSP’s underlying architecture

    Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE

    Full text link
    As more businesses and users adopt cloud computing services, security vulnerabilities will be increasingly found and exploited. There are many technological and political challenges where investigation of potentially criminal incidents in the cloud are concerned. Security experts, however, must still be able to acquire and analyze data in a methodical, rigorous and forensically sound manner. This work applies the STRIDE asset-based risk assessment method to cloud computing infrastructure for the purpose of identifying and assessing an organization's ability to respond to and investigate breaches in cloud computing environments. An extension to the STRIDE risk assessment model is proposed to help organizations quickly respond to incidents while ensuring acquisition and integrity of the largest amount of digital evidence possible. Further, the proposed model allows organizations to assess the needs and capacity of their incident responders before an incident occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp. 223-236, 201

    Simulation of truncated normal variables

    Full text link
    We provide in this paper simulation algorithms for one-sided and two-sided truncated normal distributions. These algorithms are then used to simulate multivariate normal variables with restricted parameter space for any covariance structure.Comment: This 1992 paper appeared in 1995 in Statistics and Computing and the gist of it is contained in Monte Carlo Statistical Methods (2004), but I receive weekly requests for reprints so here it is

    QMCube (QM3): An all‐purpose suite for multiscale QM/MM calculations

    Get PDF
    QMCube (QM3) is a suite written in the Python programming language, initially focused on multiscale QM/MM simulations of biological systems, but open enough to address other kinds of problems. It allows the user to combine highly efficient QM and MM programs, providing unified access to a wide range of computational methods. The suite also supplies additional modules with extra functionalities. These modules facilitate common tasks such as performing the setup of the models or process the data generated during the simulations. The design of QM3 has been carried out considering the least number of external dependencies (only an algebra library, already included in the distribution), which makes it extremely portable. Also, the modular structure of the suite should help to expand and develop new computational methods

    D3-brane action in a supergravity background: the fermionic story

    Get PDF
    Using the kappa-symmetric action for a D3-brane, we study the interaction between its world-volume fermions and a bosonic type IIB supergravity background preserving 4-dimensional Lorentz invariance. We find that the renormalizable terms in the action include only coupling between the fermions and the 3-form flux in the combination *G_3-iG_3, which is zero for a class of supersymmetric and nonsupersymmetric solutions. We also find the magnetic and electric dipole moments for the fermions, which are proportional to the derivative of the dilaton-axion. We show that different gauges to fix the kappa-symmetry give the same interaction terms, and prove that these terms are also SL(2,R) self-dual. We interpret our results in terms of N=1 supersymmetric gauge theory on the D-brane.Comment: 23 pages. Minor corrections, references adde

    The De Jong Gierveld short scales for emotional and social loneliness: tested on data from 7 countries in the UN generations and gender surveys

    Get PDF
    Loneliness concerns the subjective evaluation of the situation individuals are involved in, characterized either by a number of relationships with friends and colleagues which is smaller than is considered desirable (social loneliness), as well as situations where the intimacy in confidant relationships one wishes for has not been realized (emotional loneliness). To identify people who are lonely direct questions are not sufficient; loneliness scales are preferred. In this article, the quality of the three-item scale for emotional loneliness and the three-item scale for social loneliness has been investigated for use in the following countries participating in the United Nations “Generations and Gender Surveys”: France, Germany, the Netherlands, Russia, Bulgaria, Georgia, and Japan. Sample sizes for the 7 countries varied between 8,158 and 12,828. Translations of the De Jong Gierveld loneliness scale have been tested using reliability and validity tests including a confirmatory factor analysis to test the two-dimensional structure of loneliness. Test outcomes indicated for each of the countries under investigation reliable and valid scales for emotional and social loneliness, respectively
    corecore