3 research outputs found

    ADRA1A-Gα<sub>q</sub> signalling potentiates adipocyte thermogenesis through CKB and TNAP

    Get PDF
    Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis(1). Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α(1)-adrenergic receptor (AR) and β(3)-AR signalling induces the expression of thermogenic genes of the futile creatine cycle(2,3), and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α(1)-AR subtype (ADRA1A) and Gα(q) to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα(q) and Gα(s) signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A–Gα(q)–futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis

    Creatine kinase B controls futile creatine cycling in thermogenic fat.

    No full text
    Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle

    ADRA1A-Gα signalling potentiates adipocyte thermogenesis through CKB and TNAP

    No full text
    Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α-adrenergic receptor (AR) and β-AR signalling induces the expression of thermogenic genes of the futile creatine cycle, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo. NA triggers physical and functional coupling between the α-AR subtype (ADRA1A) and Gα to promote adipocyte thermogenesis in a manner that is dependent on the effector proteins of the futile creatine cycle, creatine kinase B and tissue-non-specific alkaline phosphatase. Combined Gα and Gα signalling selectively in adipocytes promotes a continual rise in whole-body energy expenditure, and creatine kinase B is required for this effect. Thus, the ADRA1A-Gα-futile creatine cycle axis is a key regulator of facultative and adaptive thermogenesis
    corecore