161 research outputs found
RV Sarsia Cruise 10/75, 26 August - 11 September 1975. Turbulence measurements on the sea bed off southern England
On the spherical-axial transition in supernova remnants
A new law of motion for supernova remnant (SNR) which introduces the quantity
of swept matter in the thin layer approximation is introduced. This new law of
motion is tested on 10 years observations of SN1993J. The introduction of an
exponential gradient in the surrounding medium allows to model an aspherical
expansion. A weakly asymmetric SNR, SN1006, and a strongly asymmetric SNR,
SN1987a, are modeled. In the case of SN1987a the three observed rings are
simulated.Comment: 19 figures and 14 pages Accepted for publication in Astrophysics &
Space Science in the year 201
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Spontaneous four-wave mixing in optical nanofibers at low temperatures
In this work, spontaneous four-wave mixing in silica optical nanofibers is studied theoretically. The spectrum of generated biphoton field and its dependence on the nanofiber temperature are analysed
Hydrodynamics and suspended sediment transport in the Camboriú estuary - Brazil: pre jetty conditions
The Convex Geometry of Linear Inverse Problems
In applications throughout science and engineering one is often faced with
the challenge of solving an ill-posed inverse problem, where the number of
available measurements is smaller than the dimension of the model to be
estimated. However in many practical situations of interest, models are
constrained structurally so that they only have a few degrees of freedom
relative to their ambient dimension. This paper provides a general framework to
convert notions of simplicity into convex penalty functions, resulting in
convex optimization solutions to linear, underdetermined inverse problems. The
class of simple models considered are those formed as the sum of a few atoms
from some (possibly infinite) elementary atomic set; examples include
well-studied cases such as sparse vectors and low-rank matrices, as well as
several others including sums of a few permutations matrices, low-rank tensors,
orthogonal matrices, and atomic measures. The convex programming formulation is
based on minimizing the norm induced by the convex hull of the atomic set; this
norm is referred to as the atomic norm. The facial structure of the atomic norm
ball carries a number of favorable properties that are useful for recovering
simple models, and an analysis of the underlying convex geometry provides sharp
estimates of the number of generic measurements required for exact and robust
recovery of models from partial information. These estimates are based on
computing the Gaussian widths of tangent cones to the atomic norm ball. When
the atomic set has algebraic structure the resulting optimization problems can
be solved or approximated via semidefinite programming. The quality of these
approximations affects the number of measurements required for recovery. Thus
this work extends the catalog of simple models that can be recovered from
limited linear information via tractable convex programming
The influence of vegetation on turbulence and flow velocities in European salt-marshes
Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa
In MRI scans of patientswith anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknownwhether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlyingAN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlationsrangedfrom-0.10to0.23(allp > 0.05). Thereweresomesigns ofaninverseconcordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [ 0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune systemrelevant genes, in particularDRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain-and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN.Stress-related psychiatric disorders across the life spa
- …
