973 research outputs found

    Compensation by tumor suppressor genes during retinal development in mice and humans

    Get PDF
    BACKGROUND: The RB1 gene was the first tumor suppressor gene cloned from humans by studying genetic lesions in families with retinoblastoma. Children who inherit one defective copy of the RB1 gene have an increased susceptibility to retinoblastoma. Several years after the identification of the human RB1 gene, a targeted deletion of Rb was generated in mice. Mice with one defective copy of the Rb gene do not develop retinoblastoma. In this manuscript, we explore the different roles of the Rb family in human and mouse retinal development in order to better understand the species-specific difference in retinoblastoma susceptibility. RESULTS: We found that the Rb family of proteins (Rb, p107 and p130) are expressed in a dynamic manner during mouse retinal development. The primary Rb family member expressed in proliferating embryonic retinal progenitor cells in mice is p107, which is required for appropriate cell cycle exit during retinogenesis. The primary Rb family member expressed in proliferating postnatal retinal progenitor cells is Rb. p130 protein is expressed redundantly with Rb in postmitotic cells of the inner nuclear layer and the ganglion cell layer of the mouse retina. When Rb is inactivated in an acute or chronic manner during mouse retinal development, p107 is upregulated in a compensatory manner. Similarly, when p107 is inactivated in the mouse retina, Rb is upregulated. No changes in p130 expression were seen when p107, Rb or both were inactivated in the developing mouse retina. In the human retina, RB1 was the primary family member expressed throughout development. There was very little if any p107 expressed in the developing human retina. In contrast to the developing mouse retina, when RB1 was acutely inactivated in the developing human fetal retina, p107 was not upregulated in a compensatory manner. CONCLUSION: We propose that intrinsic genetic compensation between Rb and p107 prevents retinoblastoma in Rb- or p107-deficient mice, but this compensation does not occur in humans. Together, these data suggest a model that explains why humans are susceptible to retinoblastoma following RB1 loss, but mice require both Rb and p107 gene inactivation

    Corridor-based functional performance measures correlate better with physical activity during daily life than treadmill measures in persons with peripheral arterial disease

    Get PDF
    ObjectiveTo compare associations of physical activity during daily life with treadmill walking performance and corridor-based functional performance measures in persons with lower extremity peripheral arterial disease (PAD).Study DesignCross-sectional.SubjectsOne hundred fifty-six men and women with PAD who completed baseline measurements and were randomized into the study to improve leg circulation (SILC) exercise clinical trial.Main Outcome MeasuresParticipants completed a Gardner-Skinner treadmill protocol. Corridor-based functional performance measures were the 6-minute walk, walking velocity over four meters at usual and fastest pace, and the short physical performance battery (SPPB) (0-12 scale, 12 = best). Physical activity during daily life was measured continuously over 7 days with a Caltrac (Muscle Dynamics Fitness Network, Inc, Torrence, Calif) accelerometer.ResultsAdjusting for age, gender, and race, higher levels of physical activity during daily life were associated with greater distance achieved in the 6-minute walk (P trend = .001), faster fast-paced four-meter walking velocity (P trend < .001), faster usual-paced four-meter walking speed (P trend = .027) and a higher SPPB (P trend = .005). The association of physical activity level with maximum treadmill walking distance did not reach statistical significance (P trend = .083). There were no associations of physical activity with treadmill distance to onset of leg symptoms (P trend = .795).ConclusionFunctional performance measures are more strongly associated with physical activity levels during daily life than treadmill walking measures

    Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers

    Get PDF
    Background: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units. Principal Findings: The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f.fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled fromEthiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations. Conclusion/Significance: We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme

    Mitochondrial genetic effects on latent class variables associated with susceptibility to alcoholism

    Get PDF
    We report the results of statistical genetic analyses of data from the Collaborative Study on the Genetics of Alcoholism prepared for the Genetic Analysis Workshop 14 to detect and characterize maternally inherited mitochondrial genetic effects on variation in latent class psychiatric/behavioral variables employed in the diagnosis of alcoholism. Using published extensions to variance decomposition methods for statistical genetic analysis of continuous and discrete traits we: 1) estimated the proportion of the variance in each trait due to the effects of mitochondrial DNA (mtDNA), 2) tested for pleiotropy, both mitochondrial genetic and residual additive genetic, between trait pairs, and 3) evaluated whether the simultaneous estimation of mitochondrial genetic effects on these traits improves our ability to detect and localize quantitative trait loci (QTL) in the nuclear genome. After correction for multiple testing, we find significant (p < 0.009) mitochondrial genetic contributions to the variance for two latent class variables. Although we do detect significant residual additive genetic correlations between the two traits, there is no evidence of a residual mitochondrial genetic correlation between them. Evidence for autosomal QTL for these traits is improved when linkage screens are conditioned on significant mitochondrial genetic effects. We conclude that mitochondrial genes may contribute to variation in some latent class psychiatric/behavioral variables associated with alcoholism

    Measurement of gut permeability using fluorescent tracer agent technology

    Get PDF
    Abstract The healthy gut restricts macromolecular and bacterial movement across tight junctions, while increased intestinal permeability accompanies many intestinal disorders. Dual sugar absorption tests, which measure intestinal permeability in humans, present challenges. Therefore, we asked if enterally administered fluorescent tracers could ascertain mucosal integrity, because transcutaneous measurement of differentially absorbed molecules could enable specimen-free evaluation of permeability. We induced small bowel injury in rats using high- (15 mg/kg), intermediate- (10 mg/kg), and low- (5 mg/kg) dose indomethacin. Then, we compared urinary ratios of enterally administered fluorescent tracers MB-402 and MB-301 to urinary ratios of sugar tracers lactulose and rhamnose. We also tested the ability of transcutaneous sensors to measure the ratios of absorbed fluorophores. Urinary fluorophore and sugar ratios reflect gut injury in an indomethacin dose dependent manner. The fluorophores generated smooth curvilinear ratio trajectories with wide dynamic ranges. The more chaotic sugar ratios had narrower dynamic ranges. Fluorophore ratios measured through the skin distinguished indomethacin-challenged from same day control rats. Enterally administered fluorophores can identify intestinal injury in a rat model. Fluorophore ratios are measureable through the skin, obviating drawbacks of dual sugar absorption tests. Pending validation, this technology should be considered for human use

    Knowledge-based planning in robotic intracranial stereotactic radiosurgery treatments

    Get PDF
    PURPOSE: To develop a knowledge-based planning (KBP) model that predicts dosimetric indices and facilitates planning in CyberKnife intracranial stereotactic radiosurgery/radiotherapy (SRS/SRT). METHODS: Forty CyberKnife SRS/SRT plans were retrospectively used to build a linear KBP model which correlated the equivalent radius of the PTV (req_PTV ) and the equivalent radius of volume that receives a set of prescription dose (req_Vi , where Vi = V10% , V20% ... V120% ). To evaluate the model\u27s predictability, a fourfold cross-validation was performed for dosimetric indices such as gradient measure (GM) and brain V50% . The accuracy of the prediction was quantified by the mean and the standard deviation of the difference between planned and predicted values, (i.e., DeltaGM = GMpred - GMclin and fractional DeltaV50% = (V50%pred - V50%clin )/V50%clin ) and a coefficient of determination, R(2) . Then, the KBP model was incorporated into the planning for another 22 clinical cases. The training plans and the KBP test plans were compared in terms of the new conformity index (nCI) as well as the planning efficiency. RESULTS: Our KBP model showed desirable predictability. For the 40 training plans, the average prediction error from cross-validation was only 0.36 +/- 0.06 mm for DeltaGM, and 0.12 +/- 0.08 for DeltaV50% . The R(2) for the linear fit between req_PTV and req_vi was 0.985 +/- 0.019 for isodose volumes ranging from V10% to V120% ; particularly, R(2) = 0.995 for V50% and R(2) = 0.997 for V100% . Compared to the training plans, our KBP test plan nCI was improved from 1.31 +/- 0.15 to 1.15 +/- 0.08 (P \u3c 0.0001). The efficient automatic generation of the optimization constraints by using our model requested no or little planner\u27s intervention. CONCLUSION: We demonstrated a linear KBP based on PTV volumes that accurately predicts CyberKnife SRS/SRT planning dosimetric indices and greatly helps achieve superior plan quality and planning efficiency

    Simplified dependency annotations with GFL-Web

    Get PDF
    We present GFL-Web, a web-based in-terface for syntactic dependency annota-tion with the lightweight FUDG/GFL for-malism. Syntactic attachments are spec-ified in GFL notation and visualized as a graph. A one-day pilot of this work-flow with 26 annotators established that even novices were, with a bit of training, able to rapidly annotate the syntax of En-glish Twitter messages. The open-source tool is easily installed and configured; it is available at
    corecore