30 research outputs found

    Electronic properties of amino acid side chains: quantum mechanics calculation of substituent effects

    Get PDF
    BACKGROUND: Electronic properties of amino acid side chains such as inductive and field effects have not been characterized in any detail. Quantum mechanics (QM) calculations and fundamental equations that account for substituent effects may provide insight into these important properties. PM3 analysis of electron distribution and polarizability was used to derive quantitative scales that describe steric factors, inductive effects, resonance effects, and field effects of amino acid side chains. RESULTS: These studies revealed that: (1) different semiempirical QM methods yield similar results for the electronic effects of side chain groups, (2) polarizability, which reflects molecular deformability, represents steric factors in electronic terms, and (3) inductive effects contribute to the propensity of an amino acid for α-helices. CONCLUSION: The data provide initial characterization of the substituent effects of amino acid side chains and suggest that these properties affect electron density along the peptide backbone

    Interactions Among Positions in the Third and Fourth Membrane-Associated Domains at the Intersubunit Interface of the N-Methyl-D-Aspartate Receptor Forming Sites of Alcohol Action

    Get PDF
    The N-methyl-d-aspartate (NMDA) glutamate receptor is a major target of ethanol in the brain. Previous studies have identified positions in the third and fourth membrane-associated (M) domains of the NMDA receptor GluN1 and GluN2A subunits that influence alcohol sensitivity. The predicted structure of the NMDA receptor, based on that of the related GluA2 subunit, indicates a close apposition of the alcohol-sensitive positions in M3 and M4 between the two subunit types. We tested the hypothesis that these positions interact to regulate receptor kinetics and ethanol sensitivity by using dual substitution mutants. In single-substitution mutants, we found that a position in both subunits adjacent to one previously identified, GluN1(Gly-638) and GluN2A(Phe-636), can strongly regulate ethanol sensitivity. Significant interactions affecting ethanol inhibition and receptor deactivation were observed at four pairs of positions in GluN1/GluN2A: Gly-638/Met-823, Phe-639/Leu-824, Met-818/Phe-636, and Leu-819/Phe-637; the latter pair also interacted with respect to desensitization. Two interactions involved a position in M4 of both subunits, GluN1(Met-818) and GluN2A(Leu-824), that does not by itself alter ethanol sensitivity, whereas a previously identified ethanol-sensitive position, GluN2A(Ala-825), did not unequivocally interact with any other position tested. These results also indicate a shift by one position of the predicted alignment of the GluN1 M4 domain. These findings have allowed for the refinement of the NMDA receptor M domain structure, demonstrate that this region can influence apparent agonist affinity, and support the existence of four sites of alcohol action on the NMDA receptor, each consisting of five amino acids at the M3-M4 domain intersubunit interfaces

    Two Adjacent Phenylalanines In the NMDA Receptor GluN2A Subunit M3 Domain Interactively Regulate Alcohol Sensitivity and Ion Channel Gating

    Get PDF
    The N-methyl-d-aspartate (NMDA) receptor is a key target of ethanol action in the central nervous system. Alcohol inhibition of NMDA receptor function involves small clusters of residues in the third and fourth membrane-associated (M) domains. Previous results from this laboratory have shown that two adjacent positions in the M3 domain, F636 and F637, can powerfully regulate alcohol sensitivity and ion channel gating. In this study, we report that these positions interact with one another in the regulation of both NMDA receptor gating and alcohol action. Using dual mutant cycle analysis, we detected interactions among various substitution mutants at these positions with respect to regulation of glutamate EC50, steady-state to peak current ratios (Iss:Ip), mean open time, and ethanol IC50. This interaction apparently involves a balancing of forces on the M3 helix, such that the disruption of function due to a substitution at one position can be reversed by a similar substitution at the other position. For example, tryptophan substitution at F636 or F637 increased or decreased channel mean open time, respectively, but tryptophan substitution at both positions did not alter open time. Interestingly, the effects of a number of mutations on receptor kinetics and ethanol sensitivity appeared to depend upon subtle structural differences, such as those between the isomeric amino acids leucine and isoleucine, as they could not be explained on the basis of sidechain molecular volume or hydrophilicity

    Functional Interactions of Alcohol-sensitive Sites in the \u3cem\u3eN\u3c/em\u3e-Methyl-d-aspartate Receptor M3 and M4 Domains

    Get PDF
    The N-methyl-d-aspartate receptor is an important mediator of the behavioral effects of ethanol in the central nervous system. Previous studies have demonstrated sites in the third and fourth membrane-associated (M) domains of the N-methyl-d-aspartate receptor NR2A subunit that influence alcohol sensitivity and ion channel gating. We investigated whether two of these sites, Phe-637 in M3 and Met-823 in M4, interactively regulate the ethanol sensitivity of the receptor by testing dual substitution mutants at these positions. A majority of the mutations decreased steady-state glutamate EC50 values and maximal steady-state to peak current ratios (Iss/Ip), whereas only two mutations altered peak glutamate EC50 values. Steady-state glutamate EC50 values were correlated with maximal glutamate Iss/Ip values, suggesting that changes in glutamate potency were attributable to changes in desensitization. In addition, there was a significant interaction between the substituents at positions 637 and 823 with respect to glutamate potency and desensitization. IC50 values for ethanol among the mutants varied over the approximate range 100–325 mm. The sites in M3 and M4 significantly interacted in regulating ethanol sensitivity, although this was apparently dependent upon the presence of methionine in position 823. Molecular dynamics simulations of the NR2A subunit revealed possible binding sites for ethanol near both positions in the M domains. Consistent with this finding, the sum of the molecular volumes of the substituents at the two positions was not correlated with ethanol IC50 values. Thus, there is a functional interaction between Phe-637 and Met-823 with respect to glutamate potency, desensitization, and ethanol sensitivity, but the two positions do not appear to form a unitary site of alcohol action

    Different Sites of Alcohol Action in the NMDA Receptor GluN2A and GluN2B Subunits

    Get PDF
    The NMDA receptor is a major target of alcohol action in the CNS, and recent behavioral and cellular studies have pointed to the importance of the GluN2B subunit in alcohol action. We and others have previously characterized four amino acid positions in the third and fourth membrane-associated (M) domains of the NMDA receptor GluN2A subunit that influence both ion channel gating and alcohol sensitivity. In this study, we found that substitution mutations at two of the four corresponding positions in the GluN2B subunit, F637 and G826, influence ethanol sensitivity and ion channel gating. Because position 826 contains a glycine residue in the native protein, we focused our attention on GluN2B(F637). Substitution mutations at GluN2B(F637) significantly altered ethanol IC50 values, glutamate EC50 values for peak (Ip) and steady-state (Iss) current, and steady-state to peak current ratios (Iss:Ip). Changes in apparent glutamate affinity were not due to agonist trapping in desensitized states, as glutamate Iss EC50 values were not correlated with Iss:Ip values. Ethanol sensitivity was correlated with values of both Ip and Iss glutamate EC50, but not with Iss:Ip. Values of ethanol IC50, glutamate EC50, and Iss:Ip for mutants at GluN2B(F637) were highly correlated with the corresponding values for mutants at GluN2A(F636), consistent with similar functional roles of this position in both subunits. These results demonstrate that GluN2B(Phe637) regulates ethanol action and ion channel function of NMDA receptors. However, despite highly conserved M domain sequences, ethanol\u27s actions on GluN2A and GluN2B subunits differ

    Protein Receptors Evolved from Homologous Cohesion Modules That Self-Associated and Are Encoded by Interactive Networked Genes

    No full text
    Previously, it was proposed that protein receptors evolved from self-binding peptides that were encoded by self-interacting gene segments (inverted repeats) widely dispersed in the genome. In addition, self-association of the peptides was thought to be mediated by regions of amino acid sequence similarity. To extend these ideas, special features of receptors have been explored, such as their degree of homology to other proteins, and the arrangement of their genes for clues about their evolutionary origins and dynamics in the genome. As predicted, BLASTP searches for homologous proteins detected a greater number of unique hits for queries with receptor sequences than for sequences of randomly-selected, non-receptor proteins. This suggested that the building blocks (cohesion modules) for receptors were duplicated, dispersed, and maintained in the genome, due to structure/function relationships discussed here. Furthermore, the genes coding for a representative panel of receptors participated in a larger number of gene–gene interactions than for randomly-selected genes. This could conceivably reflect a greater evolutionary conservation of the receptor genes, with their more extensive integration into networks along with inherent properties of the genes themselves. In support of the latter possibility, some receptor genes were located in active areas of adaptive gene relocation/amalgamation to form functional blocks of related genes. It is suggested that adaptive relocation might allow for their joint regulation by common promoters and enhancers, and affect local chromatin structural domains to facilitate or repress gene expression. Speculation is included about the nature of the coordinated communication between receptors and the genes that encode them

    How Variation in Risk Allele Output and Gene Interactions Shape the Genetic Architecture of Schizophrenia

    No full text
    Schizophrenia is a highly heritable polygenic psychiatric disorder. Characterization of its genetic architecture may lead to a better understanding of the overall burden of risk variants and how they determine susceptibility to disease. A major goal of this project is to develop a modeling approach to compare and quantify the relative effects of single nucleotide polymorphisms (SNPs), copy number variants (CNVs) and other factors. We derived a mathematical model for the various genetic contributions based on the probability of expressing a combination of risk variants at a frequency that matched disease prevalence. The model included estimated risk variant allele outputs (VAOs) adjusted for population allele frequency. We hypothesized that schizophrenia risk genes would be more interactive than random genes and we confirmed this relationship. Gene–gene interactions may cause network ripple effects that spread and amplify small individual effects of risk variants. The modeling revealed that the number of risk alleles required to achieve the threshold for susceptibility will be determined by the average functional locus output (FLO) associated with a risk allele, the risk allele frequency (RAF), the number of protective variants present and the extent of gene interactions within and between risk loci. The model can account for the quantitative impact of protective variants as well as CNVs on disease susceptibility. The fact that non-affected individuals must carry a non-trivial burden of risk alleles suggests that genetic susceptibility will inevitably reach the threshold for schizophrenia at a recurring frequency in the population

    Insulin/IGF-1 signaling, including class II/III PI3Ks, β-arrestin and SGK-1, is required in C. elegans to maintain pharyngeal muscle performance during starvation.

    Get PDF
    In C. elegans, pharyngeal pumping is regulated by the presence of bacteria. In response to food deprivation, the pumping rate rapidly declines by about 50-60%, but then recovers gradually to baseline levels on food after 24 hr. We used this system to study the role of insulin/IGF-1 signaling (IIS) in the recovery of pharyngeal pumping during starvation. Mutant strains with reduced function in the insulin/IGF-1 receptor, DAF-2, various insulins (INS-1 and INS-18), and molecules that regulate insulin release (UNC-64 and NCA-1; NCA-2) failed to recover normal pumping rates after food deprivation. Similarly, reduction or loss of function in downstream signaling molecules (e.g., ARR-1, AKT-1, and SGK-1) and effectors (e.g., CCA-1 and UNC-68) impaired pumping recovery. Pharmacological studies with kinase and metabolic inhibitors implicated class II/III phosphatidylinositol 3-kinases (PI3Ks) and glucose metabolism in the recovery response. Interestingly, both over- and under-activity in IIS was associated with poorer recovery kinetics. Taken together, the data suggest that optimum levels of IIS are required to maintain high levels of pharyngeal pumping during starvation. This work may ultimately provide insights into the connections between IIS, nutritional status and sarcopenia, a hallmark feature of aging in muscle
    corecore