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Abstract: The NMDA receptor is a major target of alcohol action in the CNS, 

and recent behavioral and cellular studies have pointed to the importance of 

the GluN2B subunit in alcohol action. We and others have previously 

characterized four amino acid positions in the third and fourth membrane-

associated (M) domains of the NMDA receptor GluN2A subunit that influence 

both ion channel gating and alcohol sensitivity. In this study, we found that 

substitution mutations at two of the four corresponding positions in the 

GluN2B subunit, F637 and G826, influence ethanol sensitivity and ion channel 

gating. Because position 826 contains a glycine residue in the native protein, 

we focused our attention on GluN2B(F637). Substitution mutations at 

GluN2B(F637) significantly altered ethanol IC50 values, glutamate EC50 values 

for peak (Ip) and steady-state (Iss) current, and steady-state to peak current 

ratios (Iss:Ip). Changes in apparent glutamate affinity were not due to agonist 

trapping in desensitized states, as glutamate Iss EC50 values were not 

correlated with Iss:Ip values. Ethanol sensitivity was correlated with values of 

both Ip and Iss glutamate EC50, but not with Iss:Ip. Values of ethanol IC50, 

glutamate EC50, and Iss:Ip for mutants at GluN2B(F637) were highly correlated 

with the corresponding values for mutants at GluN2A(F636), consistent with 

similar functional roles of this position in both subunits. These results 

demonstrate that GluN2B(Phe637) regulates ethanol action and ion channel 

function of NMDA receptors. However, despite highly conserved M domain 
sequences, ethanol's actions on GluN2A and GluN2B subunits differ. 

Keywords: Alcohol, Ethanol, Glutamate, NMDA receptors 

1. Introduction 

Alcohol addiction, characterized by uncontrolled consumption of 

alcoholic beverages despite the negative consequences, is thought to 

be associated with disorganized motor function, cognition, and 

aberrant learning and memory processes (Koob, 2003 and Weiss and 

Porrino, 2002), all of which involve NMDA receptors. Following the 

initial findings that alcohol inhibits the NMDA receptor (Hoffman et al., 

1989, Lima-Landman and Albuquerque, 1989 and Lovinger et al., 

1989), a large number of studies have established that the NMDA 

receptor is a major target of alcohol action in the brain that plays a 

role in several ethanol-associated phenomena such as craving, 

tolerance, dependence, withdrawal, and relapse (Chandrasekar, 2013, 

Gass and Olive, 2008, Holmes et al., 2013, Krishnan-Sarin et al., 

2015, Krupitsky et al., 2007, Krystal et al., 2003, Vengeliene et al., 

2005, Vengeliene et al., 2008 and Woodward, 1999). Alcohol inhibits 

NMDA receptors by altering ion channel gating, specifically by 

decreasing channel opening frequency and mean open time (Lima-

Landman and Albuquerque, 1989 and Wright et al., 1996), but does so 
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via an interaction with a novel modulatory site (Chu et al., 1995, 

Gonzales and Woodward, 1990, Göthert and Fink, 1989 and Peoples 

and Weight, 1992). The NMDA receptor is a heterotetramer formed 

from two obligatory GluN1 subunits and two GluN2 subunits, of which 

four different isoforms are expressed in the brain (GluN2A-GluN2D; 

(Dingledine et al., 1999)). Previous studies in our and other 

laboratories have identified and characterized a number of ethanol-

sensitive positions in the M3 and M4 domain of the GluN1 and GluN2A 

subunit (Honse et al., 2004, Ren et al., 2003a, Ren et al., 2003b, Ren 

et al., 2007, Ren et al., 2012, Ren et al., 2013, Ronald et al., 2001, 

Smothers and Woodward, 2006 and Xu et al., 2012). Although the 

GluN2A subunit-containing NMDA receptor predominates in the 

mammalian brain, the GluN2B subunit has comparable ethanol 

sensitivity (Allgaier, 2002, Kuner et al., 1993, Masood et al., 1994, 

Popp et al., 1998 and Smothers et al., 2001) and plays an important 

role in alcohol action (Boyce-Rustay and Holmes, 2005, Izumi et al., 

2005, Kash et al., 2008, Kash et al., 2009, Nagy, 2004, Wang et al., 

2007 and Wills and Winder, 2013). However, the identity of ethanol-

sensitive positions in the GluN2B subunit, and whether these are 

important for ion channel gating, is unknown. Because the M3 and M4 

domain sequences of the GluN2A and GluN2B subunit are highly 

homologous, we tested whether positions in the GluN2B M domains 

corresponding to ethanol-sensitive positions in the GluN2A subunit 

regulate GluN2B subunit ethanol sensitivity. Despite the high 

homology between the GluN2A and GluN2B subunit M domains, we 

found that mutations at only two of four cognate positions altered 

alcohol sensitivity in the GluN2B subunit, and one of these is occupied 

by a glycine residue in the native protein. Although ethanol may 

interact with main chain carbonyl groups at positions containing 

glycine residues (Dwyer, 1999), such as 826, substitution of the 

glycine at this position could disrupt functional aspects of the alpha-

helix. Although the characteristics of the remaining position, F637, 

were highly analogous to those of its cognate position in the GluN2A 

subunit, the differences at the other positions suggest that there are 

important differences in the action of ethanol on the GluN2A and 

GluN2B subunits. 

  

http://dx.doi.org/10.1016/j.neuropharm.2015.05.018
http://epublications.marquette.edu/
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib7
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib13
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib14
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib37
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib37
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib8
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib17
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib40
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib41
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib43
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib43
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib44
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib45
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib46
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib50
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib63
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib1
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib27
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib32
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib39
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib48
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib5
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib18
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib18
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib22
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib20
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib35
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib55
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib55
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib58
http://topics.sciencedirect.com/topics/page/Glycine
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib10


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuropharmacology, Vol 97 (2015): pg. 240-250. DOI. This article is © Elsevier and permission has been granted for this 
version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

4 

 

2. Materials and methods 

Chemicals. Ethanol (95%, prepared from grain) was obtained 

from Pharmco-Aaper (Brookfield, CT) and all other chemicals were 

obtained from Sigma–Aldrich Chemical Co. (St. Louis, MO, USA). 

Chemicals used to make recording solutions were the highest purity 

available. 

Site-directed mutagenesis, cell culture and transfection. Site-

directed mutagenesis in plasmids containing GluN2B subunit cDNA was 

performed using the QuickChange kit (Stratagene La Jolla, CA, USA), 

and all mutations were verified by DNA sequencing. Transformed 

human embryonic kidney (tsA 201) cells were seeded in 35-mm poly-

d-lysine coated dishes, and cultured in minimum essential medium 

(MEM) containing 10% heat-inactivated fetal bovine serum to 70–95% 

confluence. Cells were then transfected with cDNA for the GluN1-1a, 

wild type or mutant GluN2B subunits and green fluorescent protein 

(pGreen Lantern; Invitrogen, Carlsbad, CA) at a 2:2:1 ratio using 

calcium phosphate transfection kit (Invitrogen). After transfection, 

200 μM dl-2-amino-5-phosphonovaleric acid (APV) and 100 μM 

ketamine were added into culture medium to protect cells from 

receptor-mediated excitotoxicity. Cells were recorded within 48 h 

following transfection. Antagonists were removed before recording by 

extensive washing. 

Electrophysiological recording. Whole-cell patch-clamp 

recordings were performed at room temperature using an Axopatch 1D 

or 200B amplifier (Molecular Devices, Sunnyvale, CA, USA). Gigaohm 

seals were formed in whole-cell recording using patch pipettes with tip 

resistances of 2–4 MΩ, and series resistances of 1–5 MΩ were 

compensated by 80%. Cells were voltage-clamped at −50 mV and 

superfused in an external recording solution containing (in mM): NaCl, 

150; KCl, 5; CaCl2, 0.2; HEPES, 10; glucose, 10; and sucrose, 10; 

osmolality was adjusted to 340 mmol/kg with sucrose. The ratio of 

added HEPES free acid and sodium salt was calculated to result in a 

solution pH of 7.4 (Buffer Calculator, R. Beynon, University of 

Liverpool); final pH was adjusted, if necessary, using HCl or NaOH. 

Low Ca2+ was used to minimize NMDA receptor inactivation, and EDTA, 

10 μM, was added to the recording solution to eliminate the fast 
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component of apparent desensitization due to high-affinity Zn2+ 

inhibition ( Low et al., 2000, Ren et al., 2003b and Erreger and 

Traynelis, 2005). Recording solutions were prepared fresh daily and 

applied to cells using a stepper motor-driven solution exchange 

apparatus (Warner Instruments, Hamden, CT, USA) and three-barrel 

square glass tubing of internal diameter 600 μm. The intracellular 

recording solution (patch-pipette) contained (in mM) CsCl, 140; 

Mg4ATP, 2; BAPTA, 10; and HEPES, 10 (pH 7.2). In order to increase 

the speed of the solution exchange in glutamate concentration-

response experiments, cells were lifted off the surface of the dish after 

gaining a gigaohm seal. Data were filtered at 2 kHz (8-pole Bessel) 

and acquired at 5 kHz on a computer using a DigiData interface and 

pClamp software (Molecular Devices). 

Calculation of physicochemical properties of amino acids. 

Molecular (Van der Waals) volumes of amino acids were calculated 

using Spartan Pro (Wavefunction, Inc., Irvine, CA) following structural 

optimization using the AM1 semi-empirical parameters. Values used 

for amino acid hydropathy, hydrophilicity, and polarity were reported 

previously ( Ren et al., 2003b). 

Molecular modeling. Molecular modeling was performed on a 

Dell T3500 workstation with Discovery Studio 3.1 software (Accelrys, 

now Biovia; San Diego, CA). A model of a truncated version of the 

NMDA receptor was built based on the crystal structure of the rat 

NMDA heterotetramer that included both the ligand-binding and 

channel domains ( Karakas and Furukawa, 2014). We constructed a 

model confined to the channel structure of the protein and excluded 

the ligand-binding domain. The 4PE5 PDB file was used as a source of 

atomic coordinates and the sequences of rat GluNR1 and GluNR2B or 

GluNR2A subunits were aligned to the 4PE5 sequence. The original 

crystal structure lacks a number of key loops or segments, so these 

were built in piecemeal fashion using insert loop commands and, in 

some cases, by grafting a desired loop or segment to a new location. A 

model with the GluNR2B subunit was constructed first, and the version 

of the tetramer with the GluNR2A subunit was created from this model 

by mutating individual amino acids that differ in the two sequences. 

The structures were subjected to the same limited energy minimization 

regimen to resolve any major steric bumps. 
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Data analysis. In concentration-response experiments, IC50 or 

EC50 and n (slope factor) were calculated using the equation: 

y = Emax/1 + (IC50 or EC50/x)n, where y is the percent inhibition (for 

IC50) or the measured current amplitude (for EC50), x is concentration, 

and Emax is the maximal current amplitude. Statistical differences 

among concentration-response curves were determined by comparing 

log-transformed IC50 or EC50 values from fits to data obtained from 

individual cells using one-way analysis of variance (ANOVA) followed 

by the Dunnett test. Linear relations of mean values of log IC50, log 

EC50, or maximal steady-state to peak current ratio (ISS:IP) for the 

various mutants in GluN2A and GluN2B subunit were made using 

linear regression analysis. Values of log IC50, log EC50, and maximal 

steady-state to peak current ratio (ISS:IP) for GluN2A mutants are from 

previous studies ( Ren et al., 2003a, Ren et al., 2007, Ren et al., 

2013 and Honse et al., 2004). Time constants (τ) of deactivation were 

determined from fits of the current decay following the removal of 

glutamate (in the continued presence of glycine) to an exponential 

function using Clampfit (Axon Instruments). In most cells, deactivation 

was best fitted using a bi-exponential function; in these cases, the 

weighted time constant is reported. For cells in which deactivation was 

adequately fitted by a single exponential function, this value is 

reported. All values are reported as the mean ± SE. 

3. Results 

3.1. Effects of mutations at positions in GluN2B subunit 

M domains corresponding to alcohol-sensitive positions 

in GluN2A subunits 

The M3 and M4 domains are highly conserved among GluN1, 

GluN2A and GluN2B subunits (Fig. 1A). Previous studies from this 

laboratory have identified and characterized a number of ethanol-

sensitive positions in these domains of the GluN2A subunit (Fig. 1B) 

(Honse et al., 2004, Ren et al., 2003b, Ren et al., 2007 and Ren et al., 

2013). In this study, we initially constructed tryptophan and alanine 

substitutions at positions that correspond to ethanol-sensitive residues 

in the GluN2A subunit: Phe637, Phe638, Met824, and Gly826. 

Concentration-response experiments for ethanol inhibition showed that 

tryptophan or alanine mutations at Phe637 significantly changed 
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ethanol IC50 compared with the wild-type receptor, but that neither 

substitution altered ethanol sensitivity at F638 or M824. Tryptophan 

mutagenesis at GluN2B(Gly826) exhibited significantly decreased 

ethanol sensitivity compared with the wild-type receptor (Fig. 2A–B; 

ANOVA and Dunnett's test; p < 0.01 or p < 0.05). The effects of these 

substitutions in GluN2B on alcohol sensitivity thus substantially differ 

from the corresponding mutations in the GluN2A subunit ( Fig. 2C–D). 

Because the native residue at position 826 is glycine, and thus lacks a 

side chain, we chose to focus our investigation on GluN2B(F637). In 

order to study the role of GluN2B(Phe637) on ethanol action in detail, 

we made a panel of mutants at this position and tested ethanol 

sensitivities using whole-cell patch-clamp recording. All mutants we 

constructed yielded functional receptors that were inhibited by ethanol 

in a concentration-dependent manner (Fig. 3). Concentration-response 

curves for ethanol inhibition were essentially parallel to each other, as 

their slope factors did not differ significantly. 

 
Fig. 1. Positions in the GluN2B subunit M3 and M4 domains corresponding to alcohol-
sensitive positions in the GluN2A subunit. A. Partial sequences of the M3 and M4 

domains in GluN2A and GluN2B subunits. Ethanol-sensitive positions in GluN2A and 
their cognate positions in GluN2B are indicated in bold. GluN2B(Phe637) is underlined. 
B. Topological model of the GluN2B subunit showing the amino-terminal domain 

(ATD), ligand binding domain (LBD) composed of lobes S1–S2, and membrane-
associated domains (M1-M4) with the residues corresponding to the alcohol-sensitive 
positions in GluN2A shown as spheres. 
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Fig. 2. Ethanol sensitivity of tryptophan and alanine substitution mutations at GluN2B 
M3 and M4 residues corresponding to GluN2A ethanol-sensitive positions. A. 
Concentration-response curves show ethanol inhibition of glutamate–activated 
currents in the presence of 50 μM glycine in cells expressing either wild-type GluN1 
and GluN2B subunits or wild-type GluN1 and GluN2B tryptophan mutants at Phe637, 

Phe638, Met824, or Gly826. One-letter amino acid codes are used. Error bars are not 
shown to increase clarity. Curves shown are the best fits to the equation given under 
“ Materials and methods”. The curve for the wild-type receptor is shown as a dashed 
line. B. Bar graphs show average IC50 values for ethanol inhibition of glutamate-
activated current in the presence of 50 μM glycine in cells expressing wild-type GluN2B 
or GluN2B mutant subunits. IC50 values that are significantly different from the wild-
type receptor are indicated by asterisks (*P < 0.05; **P < 0.01; ANOVA and 

Dunnett's test). Results are means ± S.E of 5–7 cells. C. The M3 and M4 domains 

showing the approximate locations of the five positions tested. D. Comparison of 
ethanol IC50 values of various alanine or tryptophan mutants to the wild-type value. 
The x-axis shows the ethanol IC50 values of GluN2A subunit alanine (black circles) and 
tryptophan (black squares) substitutions and GluN2B subunit alanine (gray circles) and 
tryptophan (gray squares) substitutions at these positions. Ethanol IC50 values of wild-
type GluN2A-containing NMDA receptors (black dotted line) and GluN2B-containing 

NMDA receptors (gray dotted line) are shown. Ethanol IC50 values for alanine and 
tryptophan substitutions at various positions in GluN2A subunit are from ( Honse 
et al., 2004, Ren et al., 2003b, Ren et al., 2007 and Ren et al., 2013). 

http://dx.doi.org/10.1016/j.neuropharm.2015.05.018
http://epublications.marquette.edu/
http://topics.sciencedirect.com/topics/page/Tryptophan
http://topics.sciencedirect.com/topics/page/Alanine
http://topics.sciencedirect.com/topics/page/Point_mutation
http://topics.sciencedirect.com/topics/page/Glutamic_acid
http://topics.sciencedirect.com/topics/page/Glycine
http://www.sciencedirect.com/science/article/pii/S0028390815001999#sec2
http://topics.sciencedirect.com/topics/page/NMDA_receptor
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib17
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib17
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib41
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib43
http://www.sciencedirect.com/science/article/pii/S0028390815001999#bib45


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Neuropharmacology, Vol 97 (2015): pg. 240-250. DOI. This article is © Elsevier and permission has been granted for this 
version to appear in e-Publications@Marquette. Elsevier does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Elsevier. 

9 

 

 
Fig. 3. Mutations at GluN2B(Phe637) alter ethanol sensitivity. A. Traces show currents 
activated by 10 μM glutamate in the presence of 50 μM glycine and their inhibition by 
100 mM ethanol in cells expressing the GluN1 subunit with either wild-type GluN2B 
subunits or various GluN2B(Phe637) mutant subunits. One-letter amino acid codes are 
used. B. Concentration-response curves for ethanol inhibition of glutamate-activated 
currents in the presence of 50 μM glycine in cells expressing various substitution 

mutations at GluN2B(Phe637). Results are the means ± S.E of 5–7 cells. Error bars 
are not shown to increase clarity. The dashed line shows the fit for the wild-type 
receptor. All curves are best fits to the equation given under “ Materials and methods”. 
C. Average IC50 values for ethanol inhibition of glutamate-activated current in wild-
type or GluN2B(Phe637) mutant receptors. Asterisks indicate significant differences 
from the IC50 value of the wild-type receptor (*P < 0.05; **P < 0.01; ANOVA and 

Dunnett's test). Results are the means ± S.E of 5–7 cells. 

Six out of ten substitution mutants at GluN2B(Phe637) showed 

significantly decreased ethanol sensitivity compared to the wild-type 

(WT) receptor (ANOVA; p < 0.05 or p < 0.01), however, none of the 

mutants exhibited increased ethanol sensitivity. Interestingly, although 

isoleucine and leucine are isomeric amino acids, ethanol sensitivity 

was significantly changed by substitution of isoleucine (IC50 value: 

307 ± 9.41 mM; ANOVA and Dunnett's test; p < 0.01), but not leucine 

(IC50 value: 150 ± 1.32 mM; ANOVA and Dunnett's test; p > 0.05). 

3.2. Mutations at GluN2B(Phe637) of NMDA receptor 

alter NMDA receptor function 

Previous studies showed that ethanol inhibits NMDA receptors 

by altering ion channel gating, primarily by decreasing mean open 

time of the channel, and studies from our laboratory reported that 
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mutations at ethanol-sensitive positions in the GluN2A subunit also 

strongly influence ion channel gating kinetics (Ren et al., 2003a, Ren 

et al., 2007, Ren et al., 2008, Ren et al., 2013 and Honse et al., 

2004). In this study, we first compared glutamate peak and steady-

state EC50 values between GluN2B wild-type and GluN2B(F637W) 

mutant subunits. The GluN2B(F637W) mutant showed significantly 

decreased glutamate EC50 values for peak (1.1 ± 0.17 μM; ANOVA and 

Dunnett's test; p < 0.01) and steady-state current (1.05 ± 0.16 μM; 

ANOVA and Dunnett's test; p < 0.01; Fig. 4A and B). In addition, the 

mutant receptor also showed significantly decreased apparent 

desensitization, as indicated by the Iss:Ip ratio for 300 μM glutamate-

activated current (Fig. 4C; ANOVA and Dunnett's test; p < 0.01), and 

an increased time constant of deactivation (τ) following removal of 

agonist (F637W: 2170 ± 2.84 ms; WT: 920 ± 3.30 ms; ANOVA; 

p < 0.0001; Fig. 4D). To further determine whether mutations at 

GluN2B(Phe637) can influence NMDA receptor characteristics, we 

performed glutamate concentration-response experiments on all 

mutants tested for ethanol sensitivity (Fig. 5). Seven out of ten 

mutants showed significantly decreased glutamate Ip EC50 values 

(ANOVA and Dunnett's test; p < 0.01; Fig. 6A), but only five mutants 

showed decreased glutamate Iss EC50 values (ANOVA and Dunnett's 

test; p < 0.01; Fig. 6B). Interestingly, there was again a difference 

between the isoleucine and leucine mutants, in that isoleucine 

substitution significantly altered glutamate Iss EC50 (0.85 ± 0.078 μM; 

ANOVA and Dunnett's test; p < 0.01), whereas leucine substitution did 

not (2.5 ± 0.24 μM; ANOVA and Dunnett's test; p > 0.05; Fig. 6B). 

Pronounced increases were observed for maximal Iss:Ip ratios in all 

mutants (ANOVA and Dunnett's test; p < 0.01; Fig. 6C). 
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Fig. 4. Tryptophan substitution at GluN2B(Phe637) alters glutamate potency, 
desensitization, and deactivation. A. Glutamate concentration-response curves for 
glutamate-activated peak and steady-state currents in the presence of 50 μM glycine 
in lifted cells expressing GluN1/GluN2B or GluN1/GluN2B(F637W) receptors. Data 
points are the means ± S.E of 6 cells. Error bars are not shown to increase clarity. 
Curves shown are best fits to the equation in “ Materials and methods” for peak 

(black) and steady-state (gray) currents. B. Average peak (open bars) and steady-
state (cross-hatched bars) current EC50 values recorded in lifted cells expressing either 
wild-type GluN1/GluN2B receptors or GluN1/GluN2B(F637W) receptors. Values that 
differed significantly from wild-type peak and steady-state current EC50 values are 
indicated by asterisks (**P < 0.01; ANOVA and Dunnett's test). Results are the 
means ± S.E of 6 cells. C. Normalized traces show the desensitization of 300 μM 

glutamate-activated current in the presence of 50 μM glycine in lifted cells expressing 

either wild-type GluN1/GluN2B or GluN1/GluN2B(F637W) receptors. D. Normalized 
traces show the difference in the deactivation of glutamate-activated current following 
removal of glutamate in lifted cells expressing either wild-type GluN1/GluN2B or 
GluN1/GluN2B(F637W) subunits. 
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Fig. 5. Mutations at GluN2B(Phe637) alter glutamate EC50.A. Traces show 300 μM 
glutamate-activated current in the presence of 50 μM glycine in lifted cells expressing 
wild-type receptors or receptors containing various substitutions at GluN2B(Phe637). 
One-letter amino acid codes are used. B–C. Concentration-response curves for 
glutamate-activated peak (B) and steady-state (C) current recorded from lifted cells 
expressing wild-type or mutant receptors. Results are the means ± S.E of 4–6 cells. 

Error bars are not shown to increase clarity. All curves shown are best fits to the 
equation described in “ Materials and methods”. The dashed curves indicate the fits for 
the wild-type receptor. 
 

 
Fig. 6. Mutations at GluN2B(Phe637) change glutamate potency. Bar graphs show the 
average EC50 values for glutamate-activated peak (A) and steady-state (B) currents 
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recorded from cells expressing GluN1 and wild-type GluN2B or GluN2B(Phe637) 

mutant subunits. Asterisks indicate EC50 values that differ significantly from that of the 
wild-type GluN1/GluN2B subunit (**P < 0.01; ANOVA and Dunnett's test). Results are 
the means ± S.E of 4–6 cells. C. The average values of maximal steady-state to peak 

current ratio (Iss:Ip) in lifted cells co-expressing GluN1 and GluN2B wild-type subunits 
or GluN2B subunits containing various substitutions at F637. Currents were activated 
by 300 μM glutamate in the presence of 50 μM glycine. Asterisks indicate Iss:Ip values 
that are significantly different from the value for the wild-type GluN1/GluN2B subunit 
(**P < 0.01; ANOVA and Dunnett's test). Results are the means ± S.E of 4–6 cells. 

Figure options 

3.3. Relation of GluN2B(Phe637) mutant peak current 

glutamate EC50, steady-state EC50, and maximal 

steady-state to peak current ratio 

For a series of mutants at GluN2A(F636), glutamate EC50 values 

for steady-state current were highly correlated with those for peak 

current, but not with values of Iss:Ip (Ren et al., 2013). In the present 

study, we observed that peak current glutamate EC50 values were 

strongly correlated with steady-state current glutamate EC50 values 

(R2 = 0.95, P < 0.0001; Fig. 7A). However, EC50 values for glutamate-

activated steady-state current for mutants at GluN2B(F637) were not 

significantly correlated with maximal Iss:Ip values (R2 = 0.014, 

P > 0.05; Fig. 7B). 

 
Fig. 7. Correlations among glutamate peak and steady-state current EC50 ethanol IC50 

values. A. Graph plots values of glutamate log EC50 for steady-state current versus 
peak current in a series of mutants. Glutamate EC50 values for peak and steady-state 
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current were significantly correlated (R2 = 0.95, P < 0.0001). The lines shown are the 

least squares fits to the data. B. Graph plots log maximal steady-state to peak current 
ratio (Iss:Ip) versus either glutamate peak current log EC50 values or glutamate steady-
state current log EC50 values for various GluN1/GluN2B(Phe637) mutant receptors. Log 

maximal Iss:Ip for glutamate was not correlated with either peak or steady-state 
glutamate EC50 (p > 0.05). The lines shown are the least squares fits to the data. C–D. 
Graphs plot log ethanol IC50 values in a series of mutants versus log values of 
glutamate EC50 for peak or steady-state current (C) or the maximal Iss:Ip values (D). 
Ethanol IC50 values were correlated with glutamate EC50 for peak (R2 = 0.75, 
p < 0.001) and steady-state current (R2 = 0.59, p < 0.005), but not with Iss:Ip values 
(R2 = 0.19, p > 0.05). The lines shown are the least squares fits to the data. 

3.4. Determinants of ethanol sensitivity and receptor 

function among mutants at GluN2B(Phe637) 

To determine the manner in which the physical–chemical 

properties of the substituent at GluN2B(F637) contribute to the 

changes in ethanol IC50 values, glutamate EC50 values, and Iss:Ip 

values, we tested for linear relations of these values to amino acid 

polarity, hydrophilicity, and molecular volume. However, no significant 

linear relations were detected among these measures (Table 1). 

Table 1. Relation of NMDA receptor agonist potency and ethanol sensitivity to the 

physicochemical parameters of the substituent at GluN2B(Phe637). 

 

Glutamate Ip EC50 

 

Ethanol IC50 

 

R2 P value R2 P value 

Molecular volume 0.107 >0.05 0.073 >0.05 

Hydrophilicity 0.081 >0.05 0.109 >0.05 

Polarity 0.022 >0.05 0.034 >0.05 

Because substitution mutations at GluN2B(Phe637) altered both 

ethanol sensitivity and NMDA receptor function, we asked whether the 

observed changes in ethanol sensitivity among the series of mutant 

subunits might have resulted from changes in agonist potency or ion 

channel gating kinetics. Plots of ethanol IC50 values against values of 

glutamate EC50 for peak current, steady-state current, or maximal 

Iss:Ip revealed that ethanol sensitivity of mutants was significantly 

negatively correlated with both peak (R2 = 0.75, p < 0.001; Fig. 7C) 

and steady-state (R2 = 0.59, p < 0.005) current EC50 values, but was 

not correlated with maximal Iss:Ip (p > 0.05; Fig. 7D). 
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3.5. Effects of mutations at GluN2B(Phe637) and 

GluN2A(Phe636) on ethanol sensitivity and ion channel 

function are similar 

Because mutations at GluN2B(Phe637) and at its cognate 

position, GluN2A(Phe636), can both alter ethanol sensitivity and ion 

channel function (Ren et al., 2013), we evaluated whether the side 

chain at this position regulates the ion channel in a similar manner in 

the two subunits. We thus tested for correlations among mutants at 

GluN2B(Phe637) and GluN2A(F636) for glutamate Ip and Iss EC50, 

maximal Iss:Ip, and ethanol IC50 values. For the two series of mutants 

at GluN2B(F637) and GluN2A(F636), we observed significant 

correlations for values of glutamate EC50 for peak (R2 = 0.84, 

p < 0.0001; Fig. 8A) and steady-state (R2 = 0.76, p < 0.001; Fig. 8B) 

current, maximal Iss:Ip (R2 = 0.49, p < 0.05; Fig. 8C), and ethanol IC50 

(R2 = 0.95, p < 0.0001; Fig. 8D). 

 
Fig. 8. Ethanol sensitivity and glutamate EC50 values of GluN2B(Phe637) mutants are 
correlated with these parameters in GluN2A(Phe636) mutants. A–B. Graphs plot log 
values of either Ip EC50 (A) or Iss EC50 (B) for GluN2B(Phe637) mutants versus each of 
these two parameters for GluN2A(Phe636) mutants. Both peak and steady-state 

glutamate EC50 values were significantly correlated in the two subunit types 
(R2 = 0.84, P < 0.0001 and R2 = 0.76, P < 0.001, respectively). The lines shown are 

the least squares fits to the data. C. Values of maximal steady-state to peak current 
ratio (Iss:Ip) of GluN2B(Phe637) and GluN2A(Phe636) mutant receptors were 
significantly correlated (R2 = 0.49, P < 0.05). The line shown is the least squares fits 
to the data. D, Log ethanol IC50 values for mutants at GluN2B(Phe637) and 
GluN2A(Phe636) were significantly correlated (R2 = 0.95, P < 0.0001). The line shown 
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is the least squares fit to the data. Ethanol IC50 values, glutamate EC50 values, and 

maximal Iss:Ip values of GluN2A(Phe636) mutants are from a previous study in this 
laboratory (Ren et al., 2013). 

4. Discussion 

We and others have used alanine- and tryptophan-scanning to 

identify alcohol-sensitive positions in the GluN1 and GluN2A subunits 

(Ren et al., 2003b, Ren et al., 2007, Ren et al., 2012, Ronald et al., 

2001, Salous et al., 2009 and Smothers and Woodward, 2006). 

Previous studies in this laboratory identified several ethanol-sensitive 

positions in both the M3 and M4 domains of the GluN2A subunit: 

Phe636, Phe637, Met823, and Ala825 (Honse et al., 2004, Ren et al., 

2003b, Ren et al., 2007 and Ren et al., 2013). In the present study, 

alanine and tryptophan substitutions were initially introduced into the 

cognate positions in the GluN2B subunit M3 and M4 domains, which 

are Phe637, Phe638, Met824, and Gly826. The results of the present 

study show, however, that the role of these positions in the GluN2A 

and GluN2B subunits in determining ethanol sensitivity differs. For 

example, tryptophan mutagenesis at GluN2A(Phe637) increases 

ethanol IC50 by over two-fold relative to the wild-type value (Ren 

et al., 2007), whereas in the GluN2B subunit, tryptophan substitution 

at the cognate position, Phe638, had no effect on ethanol sensitivity. 

Of the four positions in the GluN2B subunit we tested in this study, 

only Phe637 showed alterations in ethanol sensitivity following both 

tryptophan and alanine mutagenesis. We also found no changes in 

glutamate EC50, maximal Iss:Ip, or deactivation time constant in alanine 

or tryptophan substitution mutants at Phe638 or Gly826 (results not 

shown). Interestingly, alanine or tryptophan substitution at Met824 

altered glutamate steady-state EC50 and maximal Iss:Ip values (results 

not shown), as was observed for the cognate position Met823 in 

GluN2A ( Ren et al., 2003a), but did not alter ethanol sensitivity. It 

should be noted, however, that the effect of mutations at 

GluN2A(M823) on ethanol sensitivity is significant, but relatively small, 

so that a subtle difference at this position in the GluN2B could account 

for its lack of regulation of ethanol sensitivity. The tryptophan mutant 

at Phe637 showed increases in both glutamate EC50 and time constant 

of deactivation, and both tryptophan and alanine mutants at this 

position showed decreased macroscopic desensitization. 
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Although the GluN2A and GluN2B subunit share highly 

conserved M domain sequences, our observations demonstrate that 

ethanol's actions on the two subunits differ considerably. Our 

laboratory has reported that two positions in the GluN2A M3 and M4 

domains can functionally interact to regulate ethanol sensitivity (Ren 

et al., 2008), and Smothers and Woodward (2006) identified a pair of 

positions in the GluN1 subunit that can functionally interact with 

respect to ethanol inhibition. Positions at the intersubunit M3-M4 

domain interfaces interact to regulate ethanol sensitivity and ion 

channel function (Ren et al., 2012), and can also form three-way 

interactions with M1 domain residues (Xu et al., 2015). Thus, multiple 

ethanol-sensitive positions appear to form sites of ethanol action. 

Therefore, the differences in ethanol action between GluN2A and 

GluN2B subunits identified in this study may arise because positions in 

the GluN2B subunit interact with other positions in GluN2B or GluN1 in 

a manner that differs from the cognate positions in the GluN2A 

subunit. One possible candidate for such an interacting position is an 

isoleucine at position 571 in the M1-M2 linker of the GluN2A subunit, 

which corresponds to a valine at 572 in the GluN2B subunit (Fig. 9). 

Our energy-minimized models of this region place GluN2A(I571) 

sufficiently close to a substituted tryptophan at 637 to result in a steric 

interaction between these side chains, which may explain the ability of 

the substituted tryptophan to decrease the sensitivity of the receptor 

to ethanol. In contrast, the considerable distance between 

GluN2B(Val572) and position 638 could easily accommodate a 

substituted tryptophan at 638 without steric interaction, so that 

mutations at 638 would not alter ethanol action. An alternative 

possibility is that differences among subunits may arise due to 

regulation of ethanol sensitivity by distant parts of the protein. Many 

studies from this and other laboratories have established that positions 

in the M domains are critically important for the action of ethanol 

(Honse et al., 2004, Ren et al., 2003a, Ren et al., 2003b, Ren et al., 

2007, Ren et al., 2012, Ren et al., 2013, Ronald et al., 2001, 

Smothers and Woodward, 2006, Smothers et al., 2013 and Xu et al., 

2012). For example, a recent study from this laboratory found that 

mutating only two of ten ethanol-sensitive positions in M3 and M4 

could increase the NMDA receptor ethanol IC50 value to over 1 M, 

rendering it insensitive to physiological concentrations of ethanol (Ren 

et al., 2012). However, although the NMDA receptor C-terminal and N-
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terminal domains are not required for the action of ethanol (Peoples 

and Stewart, 2000 and Smothers et al., 2013), both regions can 

influence ethanol sensitivity (Alvestad et al., 2003, Anders et al., 

1999, Anders et al., 2000, Peoples and Stewart, 2000 and Smothers 

et al., 2013), leaving open the possibility that these or other regions 

could contribute to the differences in alcohol action observed in 

GluN2A and GluN2B M domain mutants. 

 
Fig. 9. Tryptophan substitution at a position in M3 differs in the GluN2A and GluN2B 

subunits. Molecular models of the NMDA receptor M domains showing tryptophan 
substitution at 637 in GluN2A (A) or 638 in GluN2B (B). Note the difference in the 
potentially interacting isoleucine 571 in GluN2A vs. valine 572 in GluN2B. The ribbon 
for GluN1 is colored green and for GluN2A/2B is colored red. The proteins are 
superimposed so that the perspective is the same for both. The models were subjected 
to equal amounts of energy minimization. 

Previous studies have found a relation between molecular 

volume of the side chain at sites of alcohol action in GABAA and glycine 

receptors (Kash et al., 2003, Mihic et al., 1997, Wick et al., 

1998 and Yamakura et al., 1999), in the M4 domain of the GluN2A 

subunit (Ren et al., 2003b), and at the cognate position to 

GluN2B(Phe637) in the M3 domain of the NMDA receptor GluN1 

subunit (Smothers and Woodward, 2006) and GluN2A subunit (Ren 

et al., 2007). Although substitution mutations at GluN2B(Phe637) 

could significantly alter ethanol sensitivity, ethanol IC50 was not related 

to side chain molecular volume among the GluN2B(Phe637) mutants 

tested. One explanation for this may be that the side chain at 637 may 

not directly project into the interior of the ethanol-sensitive site, but 

may rather form part of the outer boundary of this site. The reason for 

the discrepancy between the role of molecular volume at this position 

in the GluN2A and GluN2B subunits, however, is not clear at present, 

but serves as additional evidence that the sites of alcohol action on the 

two subunit types differ. The results of the present study also did not 

show any relation between ethanol sensitivity and the hydrophilicity of 
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the substituent at GluN2B(Phe637). Although such a relation was 

observed among mutants at GluN2A(Met823), indicating a possible 

role for hydrophobic binding (Ren et al., 2003b), similar relations were 

not observed for other positions (Ren et al., 2007 and Salous et al., 

2009). The lack of a clear role for molecular volume and 

hydrophobicity in the present study was particularly apparent when 

comparing the leucine and isoleucine mutants: there was a striking 

difference in ethanol sensitivity between the two mutants, even though 

they have identical physicochemical characteristics. Thus, 

GluN2B(Phe637) can regulate receptor ethanol sensitivity in a complex 

manner that relies on the interaction between side chains at this 

position and other positions. Further studies will be needed to define 

these interactions. 

All GluN2B(Phe637) mutants tested in this study showed 

decreased peak glutamate EC50 values and increased maximal Iss:Ip 

values, and only three showed decreased steady-state glutamate EC50 

values. Because Phe637 is in the M3 domain, which has an important 

role in NMDA receptor ion channel gating, and is at a considerable 

distance from the ligand binding domain (Low et al., 2003, Sobolevsky 

et al., 2007, Sobolevsky et al., 2009 and Yuan et al., 2005), the 

changes in glutamate EC50 values among mutants at this position 

appear to result from modifications in ion channel gating. Although we 

did not determine direct measures of ion channel gating, such as mean 

open time, in this study, the differences in macroscopic desensitization 

indicate alterations in ion channel gating among the mutants. The 

observed differences in current amplitude among mutants at 

GluN2B(F637) may also result from altered ion channel gating. The 

isoleucine and leucine mutants also differed from each other with 

respect to glutamate EC50, such that isoleucine, but not leucine, 

substitution increased peak and steady-state glutamate EC50. This 

indicates that not only ethanol sensitivity of the NMDA receptor, but 

also ion channel gating, is sensitive to subtle structural alterations in 

the side chain at 637. A previous study showed that tryptophan 

substitution at GluN2A(Met823) significantly altered both glutamate Iss 

EC50 and desensitization (Ren et al., 2003a), and that the changes in 

glutamate steady-state EC50 values among mutants at this position 

were due to agonist trapping in desensitized states. For a series of 

amino acid substitutions at Phe636 in the GluN2A subunit, which is the 

cognate position of GluN2B(Phe637), Iss:Ip values had an inverse 
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relationship with peak glutamate EC50 values, but were not correlated 

with glutamate steady-state EC50 values (Ren et al., 2013). In 

GluN2B(Phe637) mutants, however, glutamate peak and steady-state 

EC50 values were highly correlated, but neither were correlated with 

maximal Iss:Ip values, indicating that agonist potency can be influenced 

by the substituent at this position in a manner that is independent of 

changes in desensitization. The mechanism for this appears to be due 

to changes in ion channel gating, such as increases in mean open 

time, that secondarily affect agonist binding. Thus, although 

GluN2A(Phe636) and GluN2B(Phe637) are cognate positions, and 

mutations at both positions affect ethanol sensitivity in a remarkably 

similar manner, their roles in regulation of ion channel function differ. 

Previous studies in our laboratory showed that ethanol 

sensitivity of the NMDA receptor was inversely correlated with 

glutamate EC50. In these studies, we observed that mutations at 

GluN2A(F636) and GluN2A(F637) that had higher agonist potency 

exhibited lower ethanol sensitivity (Ren et al., 2007 and Ren et al., 

2013). Similar inverse correlations between ethanol sensitivity and 

glutamate peak, steady-state EC50, or apparent desensitization were 

observed in the current study at GluN2B(Phe637). Ethanol can 

influence desensitization in a number of ion channels (Dopico and 

Lovinger, 2009 and Moykkynen et al., 2003). It is possible that 

changes in ethanol sensitivity observed in the present study are 

secondary to alterations of ion channel function in GluN2B subunit-

containing NMDA receptors, but this possibility is not consistent with 

results of previous studies in which ethanol inhibition of NMDA 

receptors did not involve changes in desensitization (Peoples et al., 

1997, Ren et al., 2003b and Woodward, 2000). Furthermore, studies 

in cells expressing GluN1/GluN2A(F636W) NMDA receptors showed 

that ethanol sensitivity was not altered when ethanol was either pre-

applied for 10 s before receptor was activated or when ethanol was 

applied during steady-state current (Ren et al., 2013). In the present 

study, we found that steady-state and peak current inhibition in 

mutants at GluN2B(Phe637) do not differ (results not shown). It thus 

appears most likely that similar factors may influence both ion channel 

kinetics and ethanol sensitivity in parallel. 
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5. Conclusions 

Although the GluN2A and GluN2B subunit M3 and M4 domains 

are highly homologous, substitution mutations at only two of four 

positions tested affect alcohol sensitivity in both subunits. 

Furthermore, as GluN2B(826) is occupied by a glycine in the native 

protein, the side chain at this position is unlikely to participate in 

alcohol inhibition, although the main chain carbonyl group may do so 

(Dwyer, 1999). The characteristics of the remaining position, 

GluN2B(637), were highly analogous to those of its cognate position in 

the GluN2A subunit, suggesting that there are both important 

similarities and differences in the action of ethanol on the GluN2A and 

GluN2B subunits. 
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