99 research outputs found

    Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh

    Get PDF
    Recent studies on the impacts of disturbance on microbial communities indicate communities show differential responses to disturbance, yet our understanding of how different microbial communities may respond to and recover from disturbance is still rudimentary. We investigated impacts of tidal restriction followed by tidal restoration on abundance and diversity of denitrifying bacteria, ammonia-oxidizing bacteria (AOB), and ammonia-oxidizing archaea (AOA) in New England salt marshes by analyzing nirS and bacterial and archaeal amoA genes, respectively. TRFLP analysis of nirS and betaproteobacterial amoA genes revealed significant differences between restored and undisturbed marshes, with the greatest differences detected in deeper sediments. Additionally, community patterns indicated a potential recovery trajectory for denitrifiers. Analysis of archaeal amoA genes, however, revealed no differences in community composition between restored and undisturbed marshes, but we detected significantly higher gene abundance in deeper sediment at restored sites. Abundances of nirS and betaproteobacterial amoA genes were also significantly greater in deeper sediments at restored sites. Porewater ammonium was significantly higher at depth in restored sediments compared to undisturbed sediments, suggesting a possible mechanism driving some of the community differences. Our results suggest that impacts of disturbance on denitrifying and ammonia-oxidizing communities remain nearly 30 years after restoration, potentially impacting nitrogen-cycling processes in the marsh. We also present data suggesting that sampling deeper in sediments may be critical for detecting disturbance effects in coastal sediments

    Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh

    Get PDF
    Ā© The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Aquatic Microbiology 3 (2013): 445, doi:10.3389/fmicb.2012.00445.Since the discovery of ammonia-oxidizing archaea (AOA), new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing bacteria (AOB). We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF), high (HF), and extra high (XF) levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C). Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs) predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.This work was supported in part by the National Science Foundation award DEB-0814586 (to Anne E. Bernhard). Additional support was provided by the George and Carol Milne Endowment at Connecticut College

    Fortification: new findings and implications

    Get PDF
    This article reviews the current landscape regarding food fortification in the United States; the content is based on aworkshop sponsored by the North American Branch of the International Life Sciences Institute. Fortification of the food supply with vitamins and minerals is a public health strategy to enhance nutrient intakes of the population without increasing caloric intake. Many individuals in the United States would not achieve recommended micronutrient intakes without fortification of the food supply. The achievement and maintenance of a desirable level of nutritional quality in the nation\u27s food supply is, thus, an important public health objective. While the addition of nutrients to foods can help maintain and improve the overall nutritional quality of diets, indiscriminate fortification of foods could result in overfortification or underfortification in the food supply and nutrient imbalances in the diets of individuals. Any changes in food fortification policy for micronutrients must be considered within the context of the impact they will have on all segments of the population and of food technology and safety applications and their limitations. This article discusses and evaluates the value of fortification, the success of current fortification efforts, and the future role of fortification in preventing or reversing nutrient inadequacies

    Analytical Challenges and Metrological Approaches to Ensuring Dietary Supplement Quality: International Perspectives

    Get PDF
    The increased utilization of metrology resources and expanded application of itsā€™ approaches in the development of internationally agreed upon measurements can lay the basis for regulatory harmonization, support reproducible research, and advance scientific understanding, especially of dietary supplements and herbal medicines. Yet, metrology is often underappreciated and underutilized in dealing with the many challenges presented by these chemically complex preparations. This article discusses the utility of applying rigorous analytical techniques and adopting metrological principles more widely in studying dietary supplement products and ingredients, particularly medicinal plants and other botanicals. An assessment of current and emerging dietary supplement characterization methods is provided, including targeted and non-targeted techniques, as well as data analysis and evaluation approaches, with a focus on chemometrics, toxicity, dosage form performance, and data management. Quality assessment, statistical methods, and optimized methods for data management are also discussed. Case studies provide examples of applying metrological principles in thorough analytical characterization of supplement composition to clarify their health effects. A new frontier for metrology in dietary supplement science is described, including opportunities to improve methods for analysis and data management, development of relevant standards and good practices, and communication of these developments to researchers and analysts, as well as to regulatory and policy decision makers in the public and private sectors. The promotion of closer interactions between analytical, clinical, and pharmaceutical scientists who are involved in research and product development with metrologists who develop standards and methodological guidelines is critical to advance research on dietary supplement characterization and health effects
    • ā€¦
    corecore