78 research outputs found

    Modeling the transition to turbulence in shear flows

    Full text link
    One-dimensional models are presented for transitional shear flows. The models have two variables corresponding to turbulence intensity and mean shear. These variables evolve according to simple equations based on known properties of transitional turbulence. The first model considered is for pipe flow. A previous study modeled turbulence using a chaotic tent map. In the present work turbulence is modeled instead as multiplicative noise. This model captures the character of transitional pipe flow and contains metastable puffs, puff splitting, and slugs. These ideas are extended to a limited model of plane Couette flow.Comment: ETC13 Conference Proceeding, 8 pages, 6 figure

    Mean flow of turbulent–laminar patterns in plane Couette flow

    Get PDF
    A turbulent–laminar banded pattern in plane Couette flow is studied numerically. This pattern is statistically steady, is oriented obliquely to the streamwise direction, and has a very large wavelength relative to the gap. The mean flow, averaged in time and in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not the linear Couette profile, but results from a non-trivial balance between advection and diffusion. This force balance yields a first approximation to the relationship between the Reynolds number, angle, and wavelength of the pattern. Remarkably, the variation of the mean flow along the pattern wavevector is found to be almost exactly harmonic: the flow can be represented via only three cross-channel profiles as U(x, y, z) ≈ U0(y) + Uc(y) cos(kz) + Us(y) sin(kz). A model is formulated which relates the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes computed for a full range of angle and Reynolds number in a tilted rectangular periodic computational domain are presented. Observations of regular turbulent–laminar patterns in other shear flows – Taylor–Couette, rotor–stator, and plane Poiseuille – are compared

    Symmetry breaking and turbulence in perturbed plane Couette flow

    Full text link
    Perturbed plane Couette flow containing a thin spanwise-oriented ribbon undergoes a subcritical bifurcation at Re = 230 to a steady 3D state containing streamwise vortices. This bifurcation is followed by several others giving rise to a fascinating series of stable and unstable steady states of different symmetries and wavelengths. First, the backwards-bifurcating branch reverses direction and becomes stable near Re = 200. Then, the spanwise reflection symmetry is broken, leading to two asymmetric branches which are themselves destabilized at Re = 420. Above this Reynolds number, time evolution leads first to a metastable state whose spanwise wavelength is halved and then to complicated time-dependent behavior. These features are in agreement with experiments

    Theoretical perspective on the route to turbulence in a pipe

    Get PDF
    The route to turbulence in pipe flow is a complex, nonlinear, spatiotemporal process for which an increasingly clear theoretical understanding has emerged. This understanding is explained to the reader in several steps, exploiting analogies to co-existing thermodynamic phases and to excitable and bistable media. In the end, simple equations encapsulating the keys physical properties of pipe turbulence provide a comprehensive picture of all large-scale states and stages of the transition process. Important among these are metastable localized puffs, localized edge states, puff splitting and interactions between puffs, the critical point for the onset of sustained turbulence via spatiotemporal intermittency (directed percolation), and finally the rise of fully turbulent flow in the form of expanding weak and strong turbulent slugs

    Taming turbulent fronts by bending pipes

    Get PDF
    The flow of fluid through a pipe has been instrumental in illuminating the subcritical route to turbulence typical of many wall-bounded shear flows. Especially important in this process are the turbulent–laminar fronts that separate the turbulent and laminar flow. Four years ago Michael Graham (Nature, vol. 526, 2015, p. 508) wrote a commentary entitled ‘Turbulence spreads like wildfire’, which is a picturesque but also accurate characterisation of the way turbulence spreads through laminar flow in a straight pipe. In this spirit, the recent article by Rinaldi et al. (J. Fluid Mech., vol. 866, 2019, pp. 487–502) shows that turbulent wildfires are substantially tamed in bent pipes. These authors find that even at modest pipe curvature, the characteristic strong turbulent–laminar fronts of straight pipe flow vanish. As a result, the propagation of turbulent structures is modified and there are hints that the route to turbulence is fundamentally altered

    A fluid mechanic's analysis of the teacup singularity

    Get PDF
    The mechanism for singularity formation in an inviscid wall-bounded fluid flow is investigated. The incompressible Euler equations are numerically simulated in a cylindrical container. The flow is axisymmetric with swirl. The simulations reproduce and corroborate aspects of prior studies reporting strong evidence for a finite-time singularity. The analysis here focuses on the interplay between inertia and pressure, rather than on vorticity. Linearity of the pressure Poisson equation is exploited to decompose the pressure field into independent contributions arising from the meridional flow and from the swirl, and enforcing incompressibility and enforcing flow confinement. The key pressure field driving the blowup of velocity gradients is that confining the fluid within the cylinder walls. A model is presented based on a primitive-variables formulation of the Euler equations on the cylinder wall, with closure coming from how pressure is determined from velocity. The model captures key features in the mechanics of the blowup scenario.Comment: 34 pages, 8 figure

    Universal continuous transition to turbulence in a planar shear flow

    Get PDF
    We examine the onset of turbulence in Waleffe flow -- the planar shear flow between stress-free boundaries driven by a sinusoidal body force. By truncating the wall-normal representation to four modes, we are able to simulate system sizes an order of magnitude larger than any previously simulated, and thereby to attack the question of universality for a planar shear flow. We demonstrate that the equilibrium turbulence fraction increases continuously from zero above a critical Reynolds number and that statistics of the turbulent structures exhibit the power-law scalings of the (2+1)-D directed percolation universality class

    Stability analysis of perturbed plane Couette flow

    Full text link
    Plane Couette flow perturbed by a spanwise oriented ribbon, similar to a configuration investigated experimentally at the Centre d'Etudes de Saclay, is investigated numerically using a spectral-element code. 2D steady states are computed for the perturbed configuration; these differ from the unperturbed flows mainly by a region of counter-circulation surrounding the ribbon. The 2D steady flow loses stability to 3D eigenmodes at Re = 230, beta = 1.3 for rho = 0.086 and Re = 550, beta = 1.5 for rho = 0.043, where Re is the Reynolds number, beta is the spanwise wavenumber and rho is the half-height of the ribbon. For rho = 0.086, the bifurcation is determined to be subcritical by calculating the cubic term in the normal form equation from the timeseries of a single nonlinear simulation; steady 3D flows are found for Re as low as 200. The critical eigenmode and nonlinear 3D states contain streamwise vortices localized near the ribbon, whose streamwise extent increases with Re. All of these results agree well with experimental observations
    corecore