8 research outputs found

    Real-Time Ultrasound Image-Guidance and Tracking in External Beam Radiotherapy

    Get PDF
    Background and Purpose - To evaluate the accuracy of Clarity (clinical version) system by using ultrasound phantom and some probe position. - To evaluate the intrafraction motion of prostate by collecting and analyzing ultrasound monitoring data from some patients. - To evaluate the accuracy of Clarity (Anticosti) system by using 3D phantom programmed with sinusoidal and breathing movement patterns to simulate computer-controlled based breath-hold phases interspersed with spontaneous breathing. - To evaluate the clinical applicability of Clarity (Anticosti) system for liver cases in healthy volunteers. The tracking results of healthy volunteers were compared to surface marker. - To evaluate the intrafraction motion during breath-hold in liver case by collecting and analyzing US monitoring data from some patients. Material and Methods The accuracy of Clarity (clinical version) system was evaluated using ultrasound phantom and some probe position. Two different probes were used: transabdominal ultrasound (TAUS) and transperineal ultrasound (TPUS) probe. Two positions of the phantom were used for TPUS, the vertical and the horizontal position. Intrafraction motion assessment of the prostate was based on continuous position monitoring with a 4D US system along the three directions; left(+)-right (LR), anterior(+)-posterior (AP), and inferior(+)-superior (SI). 770 US monitoring sessions in 38 prostate cancer patients’ normo-fractionated VMAT treatment series were retrospectively evaluated. The overall mean values and standard deviations (SD) along with random and systematic SDs were computed. The tracking accuracy of the research 4D US system was evaluated using two motion phantoms programmed with sinusoidal and breathing patterns to simulate free breathing and DIBH. The clinical performance was evaluated with 5 healthy volunteers. US datasets were acquired in computer-controlled DIBH with varying angular scanning angles. Tracked structures were renal pelvis (spherical structure) and portal/liver vein branches (non-spherical structure). An external marker was attached to the surface of both phantoms and volunteers as a secondary tracked object by an infrared camera for comparison. Residual intrafractional motion of DIBH tracking target relative to beginning position in each breath-hold plateau region was analysed along three directions; superior-inferior (SI), left-right (LR) and anterior-posterior (AP). 12 PTVs of 11 patients with primary/secondary liver tumours or adrenal gland/spleen metastases of diverse primaries were irradiated with SBRT in DIBH. Real time tracking of target or neighbouring surrogate structures was performed additionally using 4D US system during CBCT acquisition after permission of local IRB. Results The geometric positioning tolerance for Clarity-Sim and Clarity-Guide is 1 mm according to the manufacturer’s specifications. The results showed that all phantom and probe combinations met this criterion. The mean duration of each prostate monitoring session was 254s. The mean (μ), the systematic error () and the random error (σ) of intrafraction prostate motion were μ=(0.01, -0.08, 0.15)mm, =(0.30, 0.34, 0.23)mm and σ=(0.59, 0.73, 0.64)mm in LR, AP and SI direction, respectively. The percentage of treatments for which prostate motion was 2mm was present in about 0.67% of the data. The percentage increased to 2.42%, 6.14%, and 9.35% at 120s, 180s and 240s, respectively. The phantom measurements using Clarity (Anticosti) system showed increasing accuracy of US tracking with decreasing scanning range. The probability of lost tracking was higher for small scanning ranges (43.09% (10°) and 13.54% (20°)).The tracking success rates in healthy volunteers during DIBH were 93.24% and 89.86% for renal pelvis and portal vein branches, respectively. There was a strong correlation between the motion of the marker and the US tracking for the majority of analyzed breath-holds. 84.06% and 88.41% of renal pelvis target results and 82.26% and 91.94% of liver vein target results in AP and SI direction, the Pearson correlation coefficient was between 0.71 and 0.99. For evaluation of the intrafraction motion during breath-hold, 680 individual BHs during 93 treatment fractions were analysed. On visual control of tracking movies, target was lost in 27.9% of tracking, leaving a total of 490 BHs with optimal tracking. During these BHs, mean(+SD) target displacement were 1.7(+0.8)mm, 0.9(+0.4)mm, 2.2(+1.0)mm and 3.2(+1.0)mm for SI, LR, AP and 3D vector, respectively. Most of target displacement was below 2mm with percentage of 64.6%, 88.1% and 60.5% for SI, LR and AP, respectively. Data percentage of large target displacement increased with added BH time. At 5s, 3D vector of target displacement >10mm could be observed in 0.1% of data. Percentage values increased to 0.2%, 0.6%, and 1.1% at 10s, 15s and 20s, respectively. Conclusions The 4D US system offers a non-invasive method for online organ motion monitoring without additional ionizing radiation dose to the patient. The magnitudes of intrafraction prostate motion along the SI and AP directions were comparable. On average, the smallest motion was in the LR direction and the largest in AP direction. Most of the prostate displacements were within a few millimeters. However, with increased treatment time, larger 3D vector prostate displacements up to 18.30 mm could be observed. Shortening the treatment time can reduce the intrafractional motion and its effects and US monitoring can help to maximize treatment precision particularly in hypofractionated treatment regimens. For organ monitoring during BH application, the 4D US system showed a good performance and tracking accuracy in a 4D motion phantom when tracking a target that moves in accordance to a simulating breathing pattern. A 30°scanning range turned out to be an optimal parameter to track along with respiratory motion considering the accuracy of tracking and the possible loss of the tracked structure. The ultrasound tracking system is also applicable to a clinical setup with the tested hardware solution. The tracking capability of surrogate structures for upper abdominal lesions in DIBH is promising but needs further investigation in a larger cohort of patients. Ultrasound motion data show a strong correlation with surface motion data for most of individual breath-holds. Further improvement of the tracking algorithm is suggested to improve accuracy along with respiratory motion if using larger scanning angles for detection of high-amplitude motion and non-linear transformations of the tracking target. The exact quantification of residual motion impact requires an in-depth analysis of time spent at every position, nevertheless mean residual motion during DIBH is low and predominant direction is SI and AP. Only infrequently larger displacements of 3D vector >1 cm were observed, for short periods. Beam interruption at predefined thresholds could take DIBH treatments close to perfection. Key words: Medical Physics, 4D ultrasound, IGRT (image-guided radiotherapy), prostate motion, stereotactic body radiotherapy (SBRT), deep inspiratory breath-hold (DIBH)

    Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning

    Get PDF
    Background: A knowledge-based radiation therapy (KBRT) treatment planning algorithm was recently developed. The purpose of this work is to investigate how plans that are generated with the objective KBRT approach compare to those that rely on the judgment of the experienced planner. Methods: Thirty volumetric modulated arc therapy plans were randomly selected from a database of prostate plans that were generated by experienced planners (expert plans). The anatomical data (CT scan and delineation of organs) of these patients and the KBRT algorithm were given to a novice with no prior treatment planning experience. The inexperienced planner used the knowledge-based algorithm to predict the dose that the OARs receive based on their proximity to the treated volume. The population-based OAR constraints were changed to the predicted doses. A KBRT plan was subsequently generated. The KBRT and expert plans were compared for the achieved target coverage and OAR sparing. The target coverages were compared using the Uniformity Index (UI), while 5 dose-volume points (D10, D30, D50, D70 and D90) were used to compare the OARs (bladder and rectum) doses. Wilcoxon matched-pairs signed rank test was used to check for significant differences (p < 0.05) between both datasets. Results: The KBRT and expert plans achieved mean UI values of 1.10 ± 0.03 and 1.10 ± 0.04, respectively. The Wilcoxon test showed no statistically significant difference between both results. The D90, D70, D50, D30 and D10 values of the two planning strategies, and the Wilcoxon test results suggests that the KBRT plans achieved a statistically significant lower bladder dose (at D30), while the expert plans achieved a statistically significant lower rectal dose (at D10 and D30). Conclusions: The results of this study show that the KBRT treatment planning approach is a promising method to objectively incorporate patient anatomical variations in radiotherapy treatment planning

    Characterization and clinical evaluation of a novel 2D detector array for conventional and flattening filter free (FFF) IMRT pre-treatment verification

    No full text
    Background and purpose: The novel MatriXXFFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. Material and methods: The verification of the MatriXXFFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXXFFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. Results: The MatriXXFFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXXFFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ(3%,3 mm) of (98.5 ± 1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ(3%,3 mm) = (99.1 ± 1.1)%). Conclusions: The MatriXXFFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF

    Ein 4D-Ultraschall-Tracking-System für die externe Radiotherapie bei Oberbauchläsionen unter Atemanhalt

    No full text
    Background and purpose: To evaluate a&nbsp;novel four-dimensional (4D) ultrasound (US) tracking system for external beam radiotherapy of upper abdominal lesions under computer-controlled deep-inspiration breath-hold (DIBH). Materials and methods: The tracking accuracy of the research 4D&nbsp;US system was evaluated using two motion phantoms programmed with sinusoidal and breathing patterns to simulate free breathing and DIBH. Clinical performance was evaluated with five healthy volunteers. US datasets were acquired in computer-controlled DIBH with varying angular scanning angles. Tracked structures were renal pelvis (spherical structure) and portal/liver vein branches (non-spherical structure). An external marker was attached to the surface of both phantoms and volunteers as a&nbsp;secondary object to be tracked by an infrared camera for comparison. Results: Phantom measurements showed increased accuracy of US tracking with decreasing scanning range/increasing scanning frequency. The probability of lost tracking was higher for small scanning ranges (43.09% for 10° and 13.54% for 20°).The tracking success rates in healthy volunteers during DIBH were 93.24 and 89.86% for renal pelvis and portal vein branches, respectively. There was a&nbsp;strong correlation between marker motion and US tracking for the majority of analyzed breath-holds: 84.06 and 88.41% of renal pelvis target results and 82.26 and 91.94% of liver vein target results in anteroposterior and superoinferior directions, respectively; Pearson’s correlation coefficient was between 0.71 and 0.99. Conclusion: The US system showed a&nbsp;good tracking performance in 4D&nbsp;motion phantoms. The tracking capability of surrogate structures for upper abdominal lesions in DIBH fulfills clinical requirements. Further investigation in a&nbsp;larger cohort of patients is underway

    Intra-breath-hold residual motion of image-guided DIBH liver-SBRT: An estimation by ultrasound-based monitoring correlated with diaphragm position in CBCT

    No full text
    Background and purpose: Craniocaudal motion during image-guided abdominal SBRT can be reduced by computer-controlled deep-inspiratory-breath-hold (DIBH). However, a residual motion can occur in the DIBH-phases which can only be detected with intrafractional real-time-monitoring. We assessed the intra-breath-hold residual motion of DIBH and compared residual motion of target structures during DIBH detected by ultrasound (US). US data were compared with residual motion of the diaphragm-dome (DD) detected in the DIBH-CBCT-projections. Patients and methods: US-based monitoring was performed with an experimental US-system simultaneously to DIBH-CBCT acquisition. A total of 706 DIBHs during SBRT-treatments of metastatic lesions (liver, spleen, adrenal) of various primaries were registered in 13 patients. Residual motion of the target structure was documented with US during each DIBH. Motion of the DD was determined by comparison to a reference phantom-scan taking the individual geometrical setting at a given projection angle into account. Residual motion data detected by US were correlated to those of the DD (DIBH-CBCT-projection). Results: US-based monitoring could be performed in all cases and was well tolerated by all patients. Additional time for daily US-based setup required 8 ± 4 min. 385 DIBHs of 706 could be analyzed. In 59% of all DIBHs, residual motion was below 2 mm. In 36%, residual motion of 2–5 mm and in 4% of 5–8 mm was observed. Only 1% of all DIBHs and 0.16% of all readings revealed a residual motion of &gt;8 mm during DIBH. For DIBHs with a residual motion over 2 mm, 137 of 156 CBCT-to-US curves had a parallel residual motion and showed a statistical correlation. Discussion and conclusion: Soft-tissue monitoring with ultrasound is a fast real-time method without additional radiation exposure. Computer-controlled DIBH has a residual motion of &lt;5 mm in &gt;95% which is in line with the published intra-breath-hold-precision. Larger intrafractional deviations can be avoided if the beam is stopped at an US-defined threshold
    corecore