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1 INTRODUCTION 

Radiation therapy (RT), or radiotherapy, involves the use of ionizing radiation to cure 

or relieve the symptoms of cancer. Radiation can often be an alternative primary 

treatment for many tumor entities and may be offered as non-invasive treatment In 

addition, a radiotherapy treatment is very often part of a multi modal treatment 

regimen and besides surgery and chemotherapy an important column in cancer 

treatment, termed (neo-)adjuvant radiation therapy. 

The goal of RT is to deliver a lethal dose of radiation to a well-defined tumor 

volume while minimizing the dose, and hence damage, to surrounding healthy tissue. 

Typically, the prescribed radiation dose is divided into equal “fractions” that are 

delivered in regular time intervals (e.g. daily, bi times daily or every other day) over 

several weeks. This improves the outcome of treatment by allowing healthy cells to 

repair damages and repopulate between exposures 

As radiotherapy has become more conformal through the development of three-

dimensional (3D) planning and delivery techniques such as intensity-modulated 

radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT), the ability to 

verify that the planned dose is delivered to the target volume is essential. 

Image Guided Radiation Therapy (IGRT) is the use of in-room imaging to adjust 

for target motion or positional uncertainty (interfraction and intrafraction), and 

potentially, to adapt treatment to tumor response.1 The various technologies used for 

IGRT include 3D ultrasound (3D US),2 beacon responders, 3 kV/MV cone- or fan-

beam CT based methods4 and Magnetic Resonance Imaging (MRI).5-7 IGRT has the 

capability to detect the exact tumor area adjust to organ motion immediately before 

and/or during treatment. As a result, the Planning Target Volume (PTV) margins can 

be minimized, leading to a substantial reduction of the target volume to which the 

radiation dose is prescribed.8 

IMRT has become the standard radiotherapy technology used for the treatment 

of prostate cancer, because it allows the delivery of highly conformal radiation dose 

distributions. IGRT is an essential companion to IMRT that account for daily target 

anatomy changes and positioning.9 One commercial solution to monitor intrafraction 

prostate motion based on ultrasound is the Clarity system (Elekta, Sweden). The 

Clarity 4D-ultrasound system provides an autoscan probe that provides an 
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automated ultrasound scanning at the prostate cancer patient’s perineum during the 

treatment. This system is an ideal radiation free modality for real-time imaging.  

Although 3D-US has several advantages compared with other modalities, some 

limitations need to be considered. First is the accuracy of US localization. Some 

studies established the accuracy of 3D-US to be within 5 mm as compared to CT 

localization.10, 11 Accurate spatial reconstruction relies on the accuracy and constancy 

of the speed of sound within the media. Furthermore, tissue heterogeneity, probe 

pressure cause deformation and US artifacts12 have an influence on US imaging 

based accuracy.  

For real time tissue displacement monitoring, there are some issues regarding 

US performance, including: (1) lack of means to reliably obtain US images remotely 

over extended periods; (2) slow processing times for quantitative interpretation of US 

data; and (3) lack of in vivo performance evaluation of the complete US image 

guidance process.13 

Current treatment sites where the Clarity system can be used for interfractional 

and intrafractional image guidance are prostate, uterus, and bladder. Routinely 

transabdominal ultrasound (TAUS) has been used for pre-treatment interfraction 

corrections of the prostate. The bladder of the patient should have a constant filling 

(more than half full) during the treatment course in order to have good image quality 

and positioning accuracy using this probe. This can be a challenge for patients with 

genitourinary problems. Transperineal ultrasound (TPUS) has the benefit to solve 

this problem. Initial studies have reported the prostate imaging performance with 

good image quality of TPUS.14-16 Equipped with a motorized probe and automated 

ultrasound scanning possibility, TPUS can also perform intrafractional real-time 

monitoring of prostate motion. 

Intrafraction motion of prostate can be significant for some patients.17 Accurate 

identification of prostate movement can help to determine the ideal margins that can 

optimize the tumor control probability (TCP) and reduce the normal tissue 

complication probability (NTCP) at the same time. However, because of the irregular 

and unpredictable motion of the prostate motion over time, fixed margins may be not 

sufficient to compensate for this motion.18 Intrafraction motion compensation and 

online monitoring methods might be more beneficial.  

The feasibility of using the Clarity system for the monitoring of other organs is 

currently being evaluated. The Clarity system that it is used for this purpose in the 
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department of radiation oncology and radiotherapy of the university hospital 

Mannheim is a special research version named “Anticosti”. The Anticosti version is 

completely new and not commercially available in clinical routine yet. Currently in this 

department, flattening-filter-free hypofractionated Stereotactic Body Radiotherapy 

(SBRT) of liver metastases is performed in computer-controlled DIBH and image-

guidance with breath-hold cone-beam CT.19 The feasibility of using computer 

controlled deep inspiratory breath-hold (DIBH) performed e.g. with the Active 

Breathing Coordinator (ABC) system to temporarily immobilize the patient’s breathing 

has been investigated by many authors before.20-22 The treatment workflow including 

simulation, planning and treatment delivery is performed at the same DIBH conditions 

with only minimal margins needed for breathing motion uncertainty. Moderate DIBH 

results in a reproducible internal organ contour and placement. Liver SBRT using 

DIBH has been reported as an effective way to reduce liver target motion.23 However, 

intra breath-hold motion potentially enlarging the CTV-PTV margin still has to be 

considered. For intra breath-hold monitoring of the target, the Clarity (Anticosti) 

system was evaluated.  

The purpose of this thesis is to evaluate the efficacy of a Clarity system as an 

ultrasound based imaging modality for IGRT. For this purpose, measurements, data 

collection and data analysis with the Clarity system were performed. 

- To evaluate the accuracy of Clarity (clinical version) system, some 

measurements were performed using US phantom in different probe positions 

and all available US probes. 

- To evaluate the intrafractional motion of the prostate, US monitoring data of 

routinely treated patients with prostate cancer were collected and analyzed. 

- To evaluate the accuracy of Clarity (Anticosti) system for upper abdominal target 

monitoring, some measurements were performed by using a 3D phantom and US 

phantom programmed with sinusoidal and breathing movement patterns to 

simulate computer-controlled based breath-hold phases interspersed with 

spontaneous breathing. 

- To evaluate the clinical applicability of the Clarity (Anticosti) system for upper 

abdominal target monitoring, some measurements were performed in healthy 

volunteers. The tracking results of healthy volunteers were compared to point 

surface marker. 

- To evaluate the intrafractional motion during breath-hold in liver treatment cases, 
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US monitoring data of routinely treated patients were collected and analyzed. 

1.1 Radiotherapy 

Radiotherapy is one of the major modalities in cancer treatment, in addition to 

surgery and chemotherapy. The main principle in radiotherapy is that the dose in the 

target volume should be as high as possible, while keeping the dose in healthy tissue 

as small as possible. The developments of radiotherapy techniques refer to these 

main principles. These will provide radiotherapy treatment more effective and 

efficient. The most recent techniques in radiotherapy are IMRT (Intensity Modulated 

Radiotherapy) including VMAT (Volumetric Modulated Arc Therapy) using IGRT 

(Image Guided Radiotherapy). 

1.1.1 Intensity Modulated Radiation Therapy (IMRT) 

Intensity modulated radiation therapy (IMRT) is an advanced technology for 

radiotherapy treatment that precisely delivers a good dose distribution in the target 

using photon beams with a steep dose gradient to the healthy tissue surrounding the 

tumor area.24, 25 IMRT techniques employ variable intensities from multiple radiation 

beams that construct highly conformal dose distributions.26 Each radiation beam is 

subdivided into hundreds of smaller radiation beamlets with different individual 

intensities. 27 

There are three types of IMRT that can be delivered using a conventional linac. 

Those are: Step-and-shoot, sliding window, and volumetric modulated arc therapy 

(VMAT).24 These different types of IMRT differ in how the segments are formed by 

multi-leaf collimators (MLC). MLCs produce irregularly shaped radiation fields.28 In 

step-and-shoot IMRT, a dose is delivered using several MLC segments only when 

the MLC and the gantry are not moving. During beam off time MLC and or the gantry 

moves to produce the next segment. Sliding-window IMRT uses a dynamic 

modulating MLC that changes the beam shape and intensity during beam on time 

with variable dose rate but static gantry beams. VMAT is a fully variable type of IMRT 

with dynamic modulated MLC, variable dose rates during rotational gantry 

movement. VMAT can offer faster beam delivery times and more conformal dose 

distributions.24, 26 

A standard IMRT plan often uses several fixed angle radiation beams, with the 

consequence of increasing treatment time. This can affect the intrafractional motion 
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of the treatment area and the reproducibility of the treatment position. Increased 

treatment time also could have radiobiological impact due to the possibility of 

increased tumor cell repair and repopulation.26, 29, 30 

IMRT plans use larger number of monitor units (MU) compared to conventional 

(3D) radiotherapy plans. This causes an increase in the low dose radiation amount in 

the patients’ body. The number of MU used in IMRT depends on the IMRT technique. 

More MU are required in dynamic IMRT techniques, in which each radiation beam is 

modulated by continuously moving MLCs. 26, 31 The increase in MU and increase in 

low dose radiation has led to concerns of increased risk of secondary radiation-

induced malignancies. 26, 32  

There has been some interest in arc-based therapies to overcome the 

limitations with fixed gantry field IMRT.33 VMAT has the capability to deliver a high 

conformal dose distribution combined with a short treatment time and MU 

reduction.26, 34 

1.1.2 Image Guided Radiation Therapy (IGRT) 

IMRT is associated with a steep decline in dose outside the target. Because of that, it 

needs stringent requirements for control of geometric uncertainties (such as setup 

error, organ motion and tissue deformation). Raised awareness of geometric 

uncertainties and interfraction variability in tumor position emphasizes the need for 

image guidance in conjunction with IMRT. When geometric uncertainties such as 

setup error and organ motion are considered, the dose delivered to the tumor might 

be substantially lower, whereas that administered to healthy tissues might be higher, 

than initially planned. 35, 36 

Geometric uncertainties such as setup error, organ motion, and tissue 

deformation are controlled using target localization systems. Setup errors arise from 

inconsistencies in the patient’s treatment position. Organ motion is related to 

physiological processes such as breathing motion which can lead to shifts in organ 

and target position.37 As the patient progresses through the treatment, target and 

normal tissue response can lead to volume changes and deformation. As a result, the 

relative position, size, or shape of the tumor as well as the normal tissues can deviate 

from the organ models defined in the planning phase of the process. 

Several technologies are available to reestablish the patient setup with respect 

to the machine isocenter prior to each fraction, and to monitor the patient’s position 
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However, the benefits of implanting any form of marker for guidance should be 

weighed against the risk of infection or tumor seeding along the needle track. 

Criteria for the ideal IGRT solution are integrated with RT, high precision, good 

resolution, soft-tissue contrast, non-invasive, real-time imaging, during treatment, not 

too expensive and time consuming, and no or little extra radiation dose. IGRT using 

cone beam CT is associated with increased radiation exposure to the patient. US has 

the advantages that it does not result in excess radiation exposure, has the capability 

to show soft tissue, potential tracking, perfusion, Doppler, etc. It also has limits in 

imaging of bone, lung, and also pressure influence of the detector.42 

1.1.3 Stereotactic Body Radiation Therapy (SBRT) 

Stereotactic body radiation therapy (SBRT), also known as stereotactic ablative 

radiotherapy (SABR), is a method of external beam radiotherapy (EBRT) that 

accurately delivers a high dose of irradiation in one or few treatment fractions to an 

extra cranial target.43 SBRT is a highly focused radiation treatment that delivers an 

intensive dose of radiation on a tumor, while restricting the dose to the surrounding 

healthy tissues. It is a treatment for many patients with limited volume tumors in 

which surgery may not be an optimal treatment. The major difference of SBRT 

compared to conventional radiotherapy is the delivery of large doses in a few 

fractions, which results in a high biological effective dose BED. The practice of SBRT 

requires a high level of confidence in the accuracy of the entire treatment delivery 

process.44, 45 In SBRT, confidence in this accuracy is the result of integration of 

modern imaging, simulation, treatment planning, and delivery technologies.45, 46 

 

1.1.4 Prostate Cancer 

Prostate cancer is the second largest incident of cancer in the world.47 In 2015, 

prostate cancer was the cancer with the highest incidence for men in 103 countries, 

and the leading cause of cancer deaths for men in 29 countries.47 Radiotherapy is 

one of the primary modalities for treating cancer of the prostate.48 The most common 

radiotherapy technique for treating prostatic cancer is EBRT, now often delivered 

conformally using advanced techniques such as volumetric modulated arc therapy 

(VMAT) and intensity modulated radiation therapy (IMRT), to spare as much healthy 

tissue as possible.49 
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There is a strong push towards hypofractionated radiotherapy as a new 

standard of treatment for external-beam radiotherapy of localized prostate cancer 50-

52. This could potentially cause longer treatment times, lower fraction numbers, 

higher dose per fraction. Thus real time monitoring for prostate treatments becomes 

very important for hypofractionated treatment strategies, especially if no high dose 

rate flattening filter free techniques are used to compensate the longer treatment 

times. It will allow suitable reactions such as treatment beam interruption or online 

adaptation if the position deviation of the prostate is larger than a certain pre-defined 

threshold.18 

1.1.5 Liver Cancer 

The liver can be affected by primary liver cancer, which arises in the liver, or by 

cancer that forms in other parts of the body and then spreads to the liver. Most liver 

cancer is secondary or metastatic, meaning it started elsewhere in the body. 

Colorectal cancer (CRC) is one of the tumors that most often presents with solitary or 

oligometastasic disease, commonly in the liver.53 The low tolerance of liver tissue to 

irradiation raises the risk of the radiation-induced liver disease (RILD). Safe radiation 

treatment of liver metastases should be possible with a technique that delivers a very 

conformal radiation dose to the tumor and a minimal radiation dose to surrounding 

critical tissues. This technique is known as SBRT.53 To ensure the delivery accuracy, 

the target position is checked before or during SBRT treatment, by an integrated 

image acquisition system (IGRT).45 

 

Physiological respiratory motions of the liver 

Respiratory motions vary from patient to patient, although breathing itself is almost 

periodic and therefore relatively predictable. Respiratory patterns in a patient may 

change from fraction to fraction or even during one fraction, so that for a single 

patient, a general respiratory pattern cannot be assumed.54 The intrafractional motion 

of liver tumors in free breathing was described by Kitamura et al. They found the 

average amplitude of tumor motion in the 20 patients was 4 ± 4 mm (range 1-12 

mm), 5 ± 3 mm (range 2-12 mm) and 9 ± 5 mm (range 2-19 mm) in LR, AP and SI, 

respectively.55 Balter et al found that the liver moved on average 17 mm in the SI 

direction between inspiration and expiration.56  
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1.2 Inter and intrafraction motion 

Inter and intrafraction motion during radiation therapy has been a widely researched 

topic, e.g. for breast cancer 57, 58, prostate cancer 59, 60 and lung cancer.61 Intrafraction 

motion results in significant geometric and dosimetric uncertainties in radiation 

treatment planning and dose delivery.62 

Interfraction motion is the motion seen between images taken on different 

treatment fractions/days and has both systematic and random components. 

Systematic interfraction error is the average variation in treatment position calculated 

from all treatment verification images across a course of radiation therapy for a 

particular patient, compared with their planning reference image (simulator image or 

digitally reconstructed radiograph). Random interfraction error is the variability in 

patient positioning observed between daily treatment verification images. It can vary 

each day in direction and magnitude.58 

Intrafraction motion is the variability seen in multiple images acquired in rapid 

succession during the delivery of a radiation treatment beam or a single daily fraction. 

Intrafraction error is considered random, as the variations seen in multiple images 

acquired during one beam-on period are typically related to factors such as patient 

movement and internal organ motion during the treatment fraction. Random 

intrafraction error is the variability averaged across all the images taken on one day 

and compared with the averaged error of all the fractions where images were 

obtained 58. Intrafraction motion can be caused by the respiratory, skeletal muscular, 

cardiac, and gastrointestinal systems.63 Intrafraction prostate motion is associated 

with changes in rectal and bladder content, respiratory motion, and changes in 

overall patient posture.64  

Several studies quantify interfraction and intrafraction prostate motion using 

some methods, like using magnetic resonance imaging (MRI),65 real-time tracking 

with implanted electromagnetic transponders,66 and kilovoltage (kV) and 

megavoltage (MV) imaging of implanted fiducials.67, 68 Those methods need special 

effort of implanted clips, transponders or fiducial markers and give exposure to 

patient.  
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2 MATERIAL AND METHODS 

2.1 Clarity Autoscan Ultrasound (US) System 

The Clarity system (Elekta AB, Stockholm, Sweden) is a commercially available 

intermodal 4D US IGRT system that uses 2D diagnostic ultrasound (US) integrated 

with optical position-tracking components. The Clarity system consists of a 4D US 

station in both the CT-Simulator (Clarity-Sim) and treatment room (Clarity-Guide), as 

seen in Figure 2. The Clarity system is equipped with Clarity Autoscan probe. Clarity 

Autoscan probe is 2D probe in housing, with motorized control of the sweeping 

motion. The probe can make a complete scan with 75º sweep in 0.5 seconds.69 The 

system aims at tracking of prostate movements during the therapy session and has 

special patient positioning devices combined with a transperineal diagnostic 

ultrasound probe with an infrared-detected tracking tree.  

3D reference US data are first acquired after the planning-CT in treatment 

position in the isocenter using the Clarity-Sim station. The isocenter-related 3D US 

data are automatically fused with CT data on a Clarity Automatic Fusion and Contour 

(AFC) Workstation. Because US is performed directly after (but not during) planning 

CT acquisition, the fusion must be controlled offline to avoid errors due to patient 

motion between CT and US acquisition. The fusion can be modified manually 

regarding to the anatomy if errors are detected.  

Communication with treatment planning systems is accomplished through 

DICOM via the Clarity Server. This data allows for the determination and comparison 

of the absolute position of internal anatomical structures of interest at any time during 

treatment relative to the reference position of the planning-day. If the isocenter is 

being moved during the planning procedure, this can be corrected in the Clarity 

workstation with the shift coordinates. 

An optically tracked Couch Position Indicator (CPI) is used for reposition the 

patient as in the treatment plan. The optical position-tracking components and the US 

data are calibrated relative to each room's reference coordinate system (as defined 

by CT and LINAC room lasers) using a US QA phantom. The Clarity software 

combines calibration data from both rooms to establish a common reference 

coordinate system. 
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(Elekta etc). Additionally, US-based tracking of the intrafraction motion of the prostate 

has been performed with Clarity after IRB approval. 

Data from 38 patients with primary prostate cancer were prospectively 

evaluated. The study was approved by the IRB/ethical committee no. 2016-829R-MA. 

The average age of patients was 74.51+4.50 years (median 75.12 years, range 64–

87 years). Patient characteristics can be seen in Table 1.  

All patients underwent a reference US scanning after the planning CT scan 

with the Clarity 4D ultrasound system using autoscan transperineal probe (Figure 1). 

The planning CT dataset was sent to the treatment planning system (Monaco 5.11, 

Elekta AB, Stockholm, Sweden); CTVs, PTVs and organs at risk were contoured and 

a treatment plan was. Afterwards, the CT images, structure set and treatment plan 

were sent to a record-and-verify system of the Clarity workstation for creating 

ultrasound IGRT position references. 

Patients were treated with an Elekta Versa HD linear accelerator (Elekta AB, 

Stockholm, Sweden), equipped with 0.5 cm-wide leaves multi-leaf collimator and 

using energy of 6 or 10 MV with 2 arcs VMAT treatment plans. While interfraction 

patient positioning was controlled daily by kV cone-beam CT (CBCT), intrafraction 

motion of the prostate was tracked during 770 fractions by 4D transperineal US.  

Each treatment session was analyzed to determine the duration of the time 

interval in which the prostate was displaced by a certain distance from the optimal 

reference position. The duration of time the prostate spent at displacements >2, >4, 

>6, >8, and >10 mm was scored for each direction and also for 3D vector. A total of 

770 tracking sessions were available for analysis. The tracking data consisted of the 

deviation of the geometric center of the prostate from their prescribed position as a 

function of time. Positive values indicated movement toward the anterior, inferior, and 

the patient’s left direction.  

 

Patient population-based margin calculation 

Based on the van Herk formula,70 the CTV-PTV margin needed to cover the CTV 

with 95% of the dose for 90% of patients is given by: 

M = 2.5 Σ + 0.7σ         (2) 

where Σ is the standard deviation of the systematic error and σ is the standard 

deviation of the random error. 
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Table 1. Prostate patient characteristics data with PTV and prescribed dose (P+SV: 
Prostate + seminal vesicles) 
 Age Height (cm) Weight (kg) PTV and Prescribed Dose 
Pat 1  75 170 73 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 2  72 183 83 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 3  73 165 71 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 4  76 178 74 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 5  75 160 80 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 6  75 174 98 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 7  76 162 84 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 8 68 177 82 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 9 77 170 75 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 10 73 173 99 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 11 72 174 80 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 12 75 167 74 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 13 77 176 76 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 14 73 180 82 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 15 87 173 74 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 16 73 179 56 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 17 70 170 81 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 18 74 164 76 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 19 80 174 74 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 20 70 190 82 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 21 64 185 85 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 22 74 182 90 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 23 75 176 75 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 24 77 169 77 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 25 75 181 85 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 26 75 168 72 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 27 82 169 73 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 28 66 173 63 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 29 75 177 82 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 30 78 165 72 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 31 70 175 85 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 32 73 182 81 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 33 71 165 80 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 34 63 174 89 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 35 75 165 98 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 36 76 178 86 P+SV 30x2Gy Boost P+SV 5x3Gy  
Pat 37 75 163 72 Pelvis 22x2Gy P+SV 8x2Gy Boost P+SV 5x3Gy 
Pat 38 78 170 77 P+SV 30x2Gy Boost P+SV 5x3Gy  
 

2.4 Upper abdominal target monitoring – phantom study 

This part refers to the publication Sihono et al, A 4D ultrasound real-time tracking 

system for external beam radiotherapy of upper abdominal lesions under breath-hold. 

Strahlentherapie und Onkologie, 193: 213-220, 2017 71 

The Clarity system used for this prospective evaluation is the Anticosti version 

which is the research version of Clarity after approval of the local IRB No 2014-413M-
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Figure 10. Sinusoidal pattern with amplitude 10 mm and 60 s cycle time. 

 

The motion platform moved in Left-Right (LR) and Superior-Inferior (SI) 

direction. The Anterior-Posterior (AP) direction could not be measured due to 

limitation of the motion platform that cannot hold the US phantom in this direction. An 

external marker (infrared reflector) on the US phantom was used as reference for the 

phantom motion and optically tracked by the Clarity system. The difference between 

US detection and marker position was quantified to analyze the geometric tracking 

accuracy.  

 

4D phantom 

A 4D phantom (Aktina Medical, NY, USA) with a spherical structure moving in liquid 

(salt solution, 60gr salt/kg water) was used (Figure 11). The distance detection check 

was performed prior each measurement to validate the concentration of the salty 

liquid. The positioning reference was defined before the measurement. The 4D 

phantom was positioned regarding to the room laser, where the center of spherical 

structure was positioned in the intersection of the room laser and then scanned by 

the US. The US image of the 4D phantom was registered to CT coordinates in the 

Clarity AFC Workstation. After the fusion, the central sphere of 4D phantom was 

contoured and assigned as tracking target, after that positioning reference defined in 

the Clarity AFC Workstation. The US image of 4D phantom can be seen in Figure 11. 

The 4D phantom was programmed with sinusoidal pattern in 10 mm 

amplitudes and cycle times 5 s and 10 s. The phantom also was programmed with 

breathing movement patterns to simulate computer-controlled breath-hold phases 

interspersed with spontaneous breathing. The movements were applied in AP and SI 

direction. Both directions are mostly affected by breathing motion.73-75 An external 
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Table 3. Patient characteristics, HCC = Hepatocellular carcinoma, CA = carcinoma, 
CRC = colorectal carcinoma, HNO = HNO-Tumor, CCC = cholangiocellular 
carcinoma, SCLC = small cell lung cancer. 
 

  Age Sex  Weight 
(kg) 

Height 
(cm) Tumor Type Prescribed 

Dose 

Pat 1  82 M  67 173 HCC  15x3 Gy 

Pat 2  53 M 76 175 Bronchial-CA  12x5 Gy 

Pat 3  90 M 62 161 CRC  10x3 Gy 

Pat 4  56 M 70 173 Oropharynx-CA  5x12 Gy 

Pat 5  76 M 84 173 HCC  12x3 Gy 

Pat 6  84 M 65 165 Melanoma  5x12 Gy 

Pat 7  47 M 95 181 CCC  6x6 Gy 

Pat 8  55 M 66 176 Pancreas-CA  5x12 Gy 

Pat 9  58 M 111 176 CRC  7x5 Gy 

Pat 10, PTV1  68 M 72 168 CRC  5x12 Gy 

Pat 10, PTV2  68 M 72 168 CRC  5x12 Gy 

Pat 11, PTV1  55 F  104 179 Endometrium-CA  5x12 Gy 

Pat 11, PTV2  55 F  104 179 Endometrium-CA  5x12 Gy 

Pat 12 71 M 103 185 CRC  5x12 Gy 

Pat 13 63 M 70 183 SCLC 5x8 Gy 

Pat 14 82 M 70 175 CRC  5x12 Gy 

Pat 15 74 M 104 178 CRC  12x5 Gy 
 

For radiotherapy planning, each patient received a contrast-assisted, abdominal 

planning CT (Brilliance Big Bore, Philips, Eindhoven, Netherlands) with a layer 

thickness of 3 mm and a resolution of 1.2 mm in deep inspiratory breath (DIBH, about 

70% of vital capacity) acquired with the ABC system (Elekta AB, Stockholm, 

Sweden).72 The reference US image was performed after CT scan using 

transabdominal Autoscan probe of Clarity Anticosti version in DIBH. As part of the 

treatment planning, the PTV and the risk organs (liver, central hepatobiliary 

structures, kidneys, heart, lungs, small intestine, duodenum, stomach, ribs / thoracic 

wall) were contoured in Monaco 5.11 (Elekta AB, Stockholm, Sweden). The patient’s 

organ structure, plan and CT images exported to Clarity workstation for US to CT 

image registration. After US to CT image registration, the reference structure (either 

the GTV itself or a prominent, near-echo-rich surrogate (liver vein, portal vein branch) 

was set as reference positioning/tracking in Clarity workstation. 
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During daily positioning of the patient, thoracic and abdominal CBCT was 

acquired in repeated DIBH (with ABC, 6-7 DIBHs lasting 15-20 s per CBCT). CBCT 

projections were recorded exclusively during breath-hold. Prior to performing the 

CBCT, one in five trained professionals (two experienced radiographers, three 

radiotherapists) acquired the daily US dataset. The additional time required for the 

construction was documented. The Clarity system tracked the movements of the 

structure in the liver simultaneously with CBCT and treatment delivery and gave out 

the position in three planes (SI, AP, and LR) over time. 

To assess respiratory excursions, a straymarker was attached to the patient's 

body surface prior to CBCT. The stray marker consisted of an infrared reflector ball 

(diameter 11.5 mm) in a plastic bag, which was attached to the same place before 

each session with an adhesive strip (see Figure 12). The stray marker is not intended 

for clinical use and was only used to estimate the surface movement. During CBCT 

and irradiation, the position of the stray marker was detected via infrared cameras of 

the Clarity system.  

SBRT delivery was performed on a flattening filter free linear accelerator (Versa 

HD, Elekta AB, Stockholm, Sweden) with the ABC breathing control system 

connected to the linac via a gating interface (Response, Elekta AB, Stockholm, 

Sweden). Via the gating interface, the radiation beam was only started when the 

patient was in the breathing curve of the ABC system above a certain threshold. 

Irradiation was, if possible, performed with the ultrasound probe attached with the 

scan range of 30°.71 The ultrasound probe was spared from the primary beam in the 

treatment plan in these cases.78 During CBCT and radiation, the position of the target 

structure could be ultrasonically monitored on a surveillance monitor and the first 

assumptions made as to whether the device had recognized the structure or not. 

Within this work, the monitoring ultrasound data acquired during CBCTs and 

treatment were analyzed. 

Each treatment and CBCT sessions was analyzed to determine the fraction of 

time the target was displaced in breath-hold by a certain distance. The fraction of 

time the target spent at displacements >2, >4, >6, >8, and >10 mm was scored for 

each direction and also for 3D. The tracking data consisted of the deviation of the 

geometric center of the target from their prescribed position as a function of time. 

Positive values indicated movement toward the anterior, inferior, and the patient’s left 

direction.  
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3 RESULTS 

3.1 System Integrity Quality Assurance (QA) 

To evaluate the accuracy of Clarity system, some measurements of QA procedure 

were performed using US phantom in different probe positions and all available US 

probes. The results of the performed QA measurement showed that all phantom and 

probe combinations (TAUS/TPUS, vertical/horizontal and sim/guide) met the 

manufacturer’s specification criterion. The geometric positioning tolerance for Clarity-

Sim and Clarity-Guide is 1 mm according to the manufacturer’s specifications. 69 The 

mean results and standard deviations for the positioning errors are shown in Table 4. 

The QA has shown an accuracy of maximal 0.5mm in all situations.  

 

Table 4. The accuracy of Clarity system in some probe and phantom configuration. 
All values are within 1 mm and thus confirming the manufacturer’s specifications. 

Probe and 
phantom position Clarity (n) 

LR (mm) 
Mean + SD; 

median; range

AP (mm) 
Mean + SD; 

median; range 

SI (mm) 
Mean + SD; 

median; range

TAUS – vertical Clarity-Sim (59) 0.2 + 0.3; 
0.0; -0.8 – 0.7 

0.2 + 0.3; 
0.0; -0.1 – 0.0 

0.2 + 0.4; 
0.0; -1.0 – 1.0 

TPUS – vertical Clarity-Sim (25) 0.2 + 0.3; 
0.0; 0.0 – 1.0 

0.1 + 0.2; 
0.0; -0.5 – 0.0 

0.4 + 0.5; 
0.3; 0.0 – 1.0 

TPUS – horizontal Clarity-Sim (21) 0.4 + 0.5; 
0.0; -1.0 – 1.0 

0.3 + 0.5; 
0.0; -1.0 – 1.0 

0.6 + 0.4; 
1.0; 0.0 – 1.0 

TAUS – vertical Clarity-Guide (39) 0.1 + 0.1; 
0.0; -0.2 – 0.2 

0.2 + 0.2; 
0.2; 0.0 – 0.3 

0.2 + 0.1; 
-0.1; -0.5 – 0.3

TPUS – vertical Clarity-Guide (42) 0.4 + 0.3; 
-0.4; -0.9 – 0.2

0.2 + 0.1; 
-0.2; -0.6 – 0 

0.3 + 0.3; 
-0.1; -1.0 – 0.3

TPUS – horizontal Clarity-Guide (39) 0.2 + 0.2; 
0.2; -0.3 – 0.5 

0.3 + 0.2; 
-0.1; -0.7 – 0.6 

0.3 + 0.1; 
-0.2; -0.7 – 0.2

TPUS – horizontal  Clarity-Guide tracking 
(400) 

0.4 + 0.3; 
0.2; 0.0 – 1.1 

0.2 + 0.1; 
0.1; 0.0 – 0.6 

0.2 + 0.1; 
0.2; 0.1 – 0.3 
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Figure 14. US to CT image registration errors of vertical phantom scanned by TAUS. 
The results were 0 mm in 63.33%, 61.67% and 81.67% of LR, AP and SI direction, 
respectively.  
 
 

 
Figure 15. US to CT image registration errors of vertical phantom scanned by TPUS. 
The results were 0 mm in 69.23%, 69.23% and 46.15% of LR, AP and SI direction, 
respectively. 
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Figure 16. US to CT image registration errors of horizontal phantom scanned by 
TPUS. The results were 0 mm in 54.55%, 68.18% and 27.27% of LR, AP, and SI 
direction, respectively.  
 

 

Figure 17. Positioning errors of vertical phantom scanned by TAUS in treatment 
room. The results were between 0 and 0.5 mm. 
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Figure 18. Positioning errors of vertical phantom scanned by TPUS in treatment 
room. The mean (+SD) results were 0.4 + 0.3 mm, 0.2 + 0.1 mm and 0.3 + 0.3 mm 
for LR, AP and SI direction, respectively. 
 

 

 

Figure 19. Positioning errors of horizontal phantom scanned by TPUS in treatment 
room. Most of the results were between 0 and 0.5 mm. 
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The observed mean, median, and range of percentage data of 3D vector 

prostate displacements >2, >4, >6, >8, and >10 mm from all 770 fractions are 

presented in Table 5.  

 

 

 

Table 5. Percentage of data the prostate was displaced by >2, >4, >6, >8, and >10 
mm from all 770 fractions. 

  
3D vector 

> 2 mm 
3D vector

> 4mm
3D vector

> 6 mm
3D vector 

> 8 mm 
3D vector 
> 10 mm

Mean 12.49% 2.29% 0.56% 0.24% 0.11%
SD 22.39% 9.64% 5.01% 3.10% 1.78%

Median 0.00% 0.00% 0.00% 0.00% 0.00%
Min 0.00% 0.00% 0.00% 0.00% 0.00%
Max 99.37% 86.99% 71.55% 62.83% 41.40%

 
 

The largest percentage values for prostate displacements (3D vector) of >2, >4, 

>6, >8, and >10 mm that occurred in one treatment fraction of a patient were 99.37%, 

73.48%, 61.37%, 31.11%, and 21.92% of the fraction data. Analyzing all fractions for 

this patient, the corresponding values were 27.24%, 9.48%, 3.57%, 1.45%, and 

1.02% as it can be seen in Table 6. All individual patient data are presented in Table 

6 for the 3D vector displacement as well as prostate volume, number of recorded US 

sessions and average US tracking time.  

The magnitude and duration of the prostate displacements varied widely among 

the 38 patients. The average, median, and range of values observed for the 

population of 38 patients for each of the three directions, as well as the 3D vector, 

are presented in Table 7. 

The boxplots of the prostate displacements (3D vector) for each patient are 

shown in Figure 21. The horizontal band indicates the median, the lower and the 

upper edges of the box explain the first (25th) and third (75th) quartiles. The lower and 

the upper extremes of the whiskers, display the 5% and 95% quantiles values. Single 

data point outliers are the maximum prostate displacements. Table 8 shows the 

mean (+ SD) displacement of prostate for each patient in SI, LR, AP and 3D vector. 
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Table 6. Prostate volume, US session amount, average US tracking time and the 
percentage of time the prostate was displaced by >2, >4, >6, >8, and >10 mm for 
each patient. 

Pat 
No. 

Prostate 
Volume 

(cc) 

US 
Session 

Average US 
Tracking 
Time (s) 

3D Vector Prostate Displacement 
> 2 mm 

(%) 
> 4 mm 

(%) 
> 6 mm 

(%) 
> 8 mm 

(%) 
> 10 mm 

(%) 
1 62.25 5 321 9.47 0.00 0.00 0.00 0.00 
2 74.24 9 324 28.76 5.44 0.00 0.00 0.00 
3 34.07 4 229 0.00 0.00 0.00 0.00 0.00 
4 51.53 26 260 23.35 3.91 1.28 0.00 0.00 
5 49.01 18 264 17.19 3.88 0.22 0.00 0.00 
6 35.70 22 282 8.14 0.85 0.00 0.00 0.00 
7 20.29 21 281 16.22 0.82 0.07 0.00 0.00 
8 57.9 22 297 23.73 4.32 0.00 0.00 0.00 
9 30.55 26 309 25.55 0.33 0.00 0.00 0.00 
10 45.75 20 279 33.64 6.78 0.86 0.66 0.29 
11 57.62 18 260 5.82 0.35 0.06 0.00 0.00 
12 65.87 17 245 5.55 1.39 0.00 0.00 0.00 
13 70.58 19 267 27.24 9.48 3.57 1.45 1.02 
14 52.13 22 239 19.27 1.87 0.00 0.00 0.00 
15 29.23 23 232 7.49 0.16 0.00 0.00 0.00 
16 33.44 7 220 25.63 2.22 1.03 0.67 0.00 
17 22.58 27 237 0.48 0.00 0.00 0.00 0.00 
18 70.49 19 210 8.75 1.81 0.21 0.00 0.00 
19 117.72 6 253 7.10 0.00 0.00 0.00 0.00 
20 42.34 33 247 8.86 2.12 1.21 0.10 0.00 
21 40.49 24 221 5.08 0.00 0.00 0.00 0.00 
22 83.28 9 248 35.46 2.17 0.00 0.00 0.00 
23 32.67 26 275 29.48 16.61 10.79 6.25 5.88 
24 53.34 23 240 10.88 2.84 0.00 0.00 0.00 
25 38.04 28 239 20.18 5.64 2.30 0.00 0.00 
26 82.99 30 259 4.63 0.16 0.00 0.00 0.00 
27 51.18 30 212 4.96 1.20 0.04 0.00 0.00 
28 65.05 33 226 10.21 0.16 0.00 0.00 0.00 
29 19.32 29 232 8.78 3.31 1.70 0.96 0.03 
30 42.34 18 252 24.14 7.15 0.05 0.05 0.05 
31 135.44 27 271 43.45 11.41 6.69 5.60 1.15 
32 22.88 10 273 17.99 1.91 0.00 0.00 0.00 
33 52.83 27 243 0.49 0.08 0.04 0.01 0.01 
34 57.27 26 245 1.49 0.04 0.01 0.01 0.01 
35 69.9 7 236 13.39 0.02 0.00 0.00 0.00 
36 58.48 27 248 24.37 6.29 0.01 0.00 0.00 
37 37.25 9 271 8.40 1.16 0.00 0.00 0.00 
38 48.70 23 222 0.29 0.00 0.00 0.00 0.00 
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Table 8. Mean displacement of prostate for each patient in SI, LR, AP and 3D vector 

Patient SI LR AP 3D Vector 

1 0.29 + 0.64 0.17 + 0.27 -0.40 + 0.62 0.97 + 0.46 
2 -0.15 + 0.45 -0.05 + 0.78 0.34 + 1.12 1.41 + 0.63 
3 0.40 + 0.33 -0.22 + 0.24 0.03 + 0.27 0.73 + 0.23 
4 0.27 + 0.64 0.28 + 0.74 -0.34 + 0.99 1.29 + 0.95 
5 0.07 + 1.12 -0.18 + 0.39 -0.03 + 0.71 1.30 + 0.94 
6 -0.17 + 0.58 -0.05 + 0.31 0.01 + 0.55 0.90 + 0.47 
7 0.38 + 0.67 -0.10 + 0.30 -0.33 + 0.75 1.15 + 0.59 
8 0.27 + 0.59 0.82 + 0.42 -0.38 + 0.67 1.23 + 0.72 
9 0.23 + 0.75 -0.41 + 0.40 -0.49 + 0.80 1.40 + 0.46 
10 -0.43 + 1.02 -0.17 + 0.67 0.48 + 1.15 1.55 + 1.06 
11 0.19 + 0.37 0.14 + 0.38 -0.40 + 0.58 0.92 + 0.41 
12 0.06 + 0.35 -0.16 + 0.15 -0.06 + 0.37 0.56 + 0.34 
13 -0.12 + 1.02 0.18 + 1.02 0.26 + 0.92 1.61 + 1.47 
14 -0.40 + 0.59 0.37 + 0.50 0.61 + 0.80 1.27 + 0.78 
15 0.13 + 0.51 -0.20 + 0.27 -0.32 + 0.51 0.78 + 0.48 
16 -0.37 + 0.89 -0.62 + 0.55 0.26 + 0.55 1.51 + 0.79 
17 0.12 + 0.24 -0.16 + 0.33 -0.19 + 0.27 0.58 + 0.28 
18 0.02 + 0.45 0.05 + 0.38 0.15 + 0.92 1.01 + 0.63 
19 0.07 + 0.30 0.81 + 0.40 0.14 + 0.34 1.05 + 0.36 
20 -0.01 + 0.33 -0.25 + 0.69 -0.25 + 0.70 0.88 + 0.82 
21 0.03 + 0.46 0.04 + 0.24 -0.33 + 0.45 0.75 + 0.39 
22 -0.11 + 0.40 0.33 + 1.05 0.28 + 1.05 1.55 + 0.91 
23 0.47 + 1.60 -0.02 + 0.48 -0.44 + 1.51 1.67 + 1.80 
24 0.12 + 0.38 0.33 + 0.52 -0.24 + 0.56 0.97 + 0.49 
25 -0.05 + 0.73 -0.19 + 0.51 0.41 + 0.81 1.01 + 0.94 
26 0.01 + 0.35 -0.03 + 0.46 -0.28 + 0.44 0.78 + 0.38 
27 0.02 + 0.44 -0.01 + 0.36 -0.08 + 0.58 0.80 + 0.52 
28 -0.32 + 0.57 -0.22 + 0.43 0.29 + 0.59 1.03 + 0.49 
29 -0.01 + 0.55 0.04 + 0.72 -0.07 + 0.55 0.79 + 0.88 
30 0.12 + 1.02 0.20 + 0.92 -0.10 + 0.94 1.53 + 1.00 
31 0.56 + 0.71 0.23 + 1.49 -0.92 + 1.05 1.89 + 1.33 
32 0.38 + 0.47 -0.40 + 0.57 -0.66 + 0.66 1.25 + 0.56 
33 0.07 + 0.38 0.00 + 0.34 -0.03 + 0.43 0.69 + 0.25 
34 0.01 + 0.45 -0.20 + 0.30 -0.07 + 0.41 0.66 + 0.37 
35 -0.13 + 0.47 0.20 + 0.72 0.15 + 0.43 0.98 + 0.53 
36 -0.21 + 0.56 -0.18 + 0.58 0.43 + 0.91 1.29 + 0.69 
37 0.02 + 0.46 -0.36 + 0.70 -0.25 + 0.48 0.73 + 0.82 
38 -0.03 + 0.29 -0.03 + 0.15 -0.09 + 0.16 0.39 + 0.23 
 

The relation of prostate displacement with time is listed in Figure 22. The 

percentage of prostate displacement frequency increased with longer observation 

time. At 60 s, a 3D vector of prostate displacement > 2 mm could be observed in 

0.67% of the data. The percentage values increased to 2.42%, 6.14%, and 9.35% at 

120 s, 180 s and 240 s, respectively. 
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Figure 22. The histogram of prostate displacement (3D vector) related to time from all 
770 fractions. The percentage of prostate displacement frequency increased with 
longer observation time. 
 

The mean (μ), the systematic error (Σ) and the random error (σ) of intrafraction 

motion of prostate were μ = (0.01, -0.08, 0.05) mm, Σ = (0.30, 0.34, 0.23) mm and σ 

= (0.59, 0.73, 0.64) mm in LT, AP and SI direction respectively. Using the van Herk 

formula, a margin between the CTV and PTV was calculated to account for 

intrafraction motion. Margins of 1.25 mm, 1.33 mm, and 1.10 mm were calculated in 

the LR, AP, and SI directions, regarding the intrafraction residual motion respectively.  

3.3 Upper abdominal target monitoring – phantom study 

Ultrasound phantom and motion platform  

The first experiment using ultrasound phantom and 4D motion platform was 

performed with default settings of the US system (40° scanning range) with different 

cycle times (T) of sinusoidal patterns (amplitude, A=10 mm). The tracking accuracy 

decreased with decreasing cycle times, as it can be seen in Figure 20. The 

differences between the measurement and the reference position values (mean 

standard + standard deviation) were 0.38 + 0.32 mm, 0.62 + 0.46 mm, 1.10 + 1.10 

mm, and 1.71 + 1.12 mm for 60s, 45s, 30s and 15s, respectively. For a fixed cycle 

time of 60s and a variation of scanning range, the results were 0.38 + 0.32 mm, 0.32 

+ 0.20 mm, 0.24 + 0.15 mm, and 0.23 + 0.15 mm for 40°, 30°, 20° and 10° scanning 
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range, respectively. The results have the same trend for fixed cycle time of 6s with 

variation of scanning range in 2 different amplitudes, 5 and 10 mm. The results for 

amplitude 5 cm were 1.10 + 1.45 mm, 0.53 + 0.92 mm, 0.45 + 0.52 mm, 0.39 + 0.38 

mm for 40°, 30°, 20° and 10° scanning range, respectively. The results for amplitude 

5 mm were 2.16 + 3.02 mm, 1.29 + 2.55 mm, 1.19 + 1.15 mm, 0.62 + 0.74 mm for 

40°, 30°, 20° and 10° scanning range, respectively. All results are summarized in 

Table 9. 

 

4D phantom  

The US system could track the sphere motion in the phantom using two sinusoidal 

pattern (cycle time 5s and 10s, amplitude 10 cm) and five breathing patterns 

simulating computer-controlled breath-hold phases interspersed with spontaneous 

breathing, as it can be seen in Figure 24. The accuracy of ultrasound tracking 

increased with decreasing the scanning range. The differences between the 

measurement and the reference (mean + standard deviation) of the sphere motion 

can be seen in Table 10. Figure 25 shows the measurement result from one 

representative breathing pattern with different scanning ranges (10°, 20°, 30° and 

40°). 

 

 

Table 9. The differences between the measurement of ultrasound phantom in motion 
platform and the reference of sinusoidal patterns  

Scanning 
range (°) 

Differences between the measurement and the reference of sinusoidal 
pattern with amplitude A and cycle time T  

(mean + standard deviation) in mm 

A = 10 mm, T = 18s A = 10 mm, T = 6s A = 5 mm, T = 6s 

10 0.34 + 0.29 0.62 + 0.74 0.39 + 0.38 

20 0.78 + 0.76 1.19 + 1.15 0.45 + 0.52 

30 0.89 + 0.66 1.29 + 2.55 0.53 + 0.90 

40 1.45 + 1.18 2.16 + 3.02 1.10 + 1.45 
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Figure 23. The measurement results using ultrasound phantom and motion platform 
with different cycle times. The tracking accuracy decreased with decreasing cycle 
times (faster motion). 
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Figure 24. The results of five breathing patterns simulating computer-controlled 
breath-hold phases interspersed with spontaneous breathing in 30° scanning range. 
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the US did not cover whole target. The average amplitude of the free breathing 

pattern was 11 mm and the maximum amplitude was 15 mm. In the breath-holds 

phases, the average amplitude was 16 mm and the maximum amplitude was 20 mm. 

Relevant lost tracking occurred only in the 10° and 20° scanning range for all 

breathing phases of the emulated cycle. Mean lost tracking incidence occurring at 

10° and 20° scanning range was 43.09% and 13.54%, respectively in all phases 

(breath-hold and spontaneous breathing) of the emulated breathing/breath-hold 

cycle. It turned out that 30° seemed to be the optimal scanning range at the clinical 

setting to track along with respiratory motion with a probability of lost tracking below 

0.1%.  

If the breath-hold phase is separated with free-breathing phase in breathing 

pattern, the mean differences between the measurement and the reference (mean + 

position in breath-hold phase is remain constant in all scanning range. While for free-

breathing phase, the accuracy of tracking increased with decreasing of the scanning 

range. The differences between the measurement and the reference position (mean 

+ standard deviation) of the sphere motion in breathing pattern, separated between 

breath-hold phase and free-breathing phase, can be seen in Table 11. 

 

Table 11. The differences between the measurement and the reference position 
(mean + standard deviation) (N=40)) for breathing pattern with separate breath-hold 
phase and free-breathing phase. 

Scanning 
range (°) 

Differences between the measurement and the 
reference (mean + standard deviation) position  

in mm 
Breath-hold Phase Free-breathing Phase 

10 0.23 + 0.37 0.26 + 0.56 

20 0.12 + 0.22 0.44 + 0.71 

30 0.14 + 0.31 0.83 + 1.22 

40 0.14 + 0.35 0.99 + 1.50 
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in AP component on the infra-diaphragmatic abdominal wall. Over all HV and scan 

ranges, the Pearson correlation coefficient (PCC) was strong for most breath-holds 

analyzed. 

Strong correlation (PCC more than 0.71) was observed in 58 (78.38%) and 61 

(88.41%) breath-holds in AP and SI direction, respectively for renal pelvis target. 

Only 9 (12.16%) DIBHs in AP direction and 5 (7.25%) DIBHs in SI direction showed 

weak correlation (PCC 0.5-0.69). No correlation (PCC less than 0.49) was found in 2 

(2.70%) and 3 (4.35%) breath-holds for AP and SI direction, respectively. 

For the liver vein target, a strong correlation PCC was found in 51 (73.91%) and 

57 (82.61%) breath-holds in AP and SI direction, respectively. Only 6 (8.70%) and 5 

(7.25%) breath-holds showed weak correlation PCC in AP and SI direction, 

respectively. No correlation PCC was found in 5 (7.25%) breath-holds for AP 

direction. The results can be seen in Table 12. 

Scan range and HV did not have a statistically significant effect on the 

correlation (p values 0.74 and 0.129). For scanning range 40°, a strong correlation 

PCC was found in 38 and 41 breath-holds in AP and SI direction, respectively. Only 7 

and 6 breath-holds showed weak correlation PCC in AP and SI direction, 

respectively. No correlation PCC was found in 3 and 1 breath-holds in AP and SI 

direction, respectively. The others scanning range results can be seen in Table 13.  

 

Table 12. The frequency of the Pearson correlation coefficient (PCC) between US 
tracking and external marker AP movement in breath-hold phase. 

Statistical Correlation Renal pelvis Portal vein /  
liver vein branches 

 AP Direction 
(n) 

SI Direction 
(n) 

AP Direction 
(n) 

SI Direction 
(n) 

Strong PCC (0.70 – 1) 58 61 51 57 

Weak PCC (0.50 – 0.69) 9 5 6 5 

None PCC (0 – 0.49) 2 3 5 0 
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Table 13. The frequency of the Pearson correlation coefficient (PCC) between US 
tracking and external marker movement in breath-hold phase at different scanning 
range 

Statistical Correlation Renal pelvis Portal vein /  
liver vein branches 

 AP Direction 
(n) 

SI Direction 
(n) 

AP Direction 
(n) 

SI Direction 
(n) 

Scanning Range 40°     

Strong PCC (0.70 – 1) 20 23 18 18 

Weak PCC (0.50 – 0.69) 4 2 3 4 

None PCC (0 – 0.49) 2 1 1 0 

Scanning Range 25°     

Strong PCC (0.70 – 1) 21 21 15 19 

Weak PCC (0.50 – 0.69) 4 3 2 1 

None PCC (0 – 0.49) 0 1 3 0 

Scanning Range 10°     

Strong PCC (0.70 – 1) 17 17 18 20 

Weak PCC (0.50 – 0.69) 1 0 1 0 

None PCC (0 – 0.49) 0 1 1 0 

 

 

Healthy volunteer no 5 had strong PCC in all breath-holds and both target 

tracking. Healthy volunteer no 4 had most no correlation PCC and weak correlation 

with 4 and 14 breath-holds, respectively. The other healthy volunteer results can be 

seen in Table 14. 
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Table 14. The frequency of the Pearson correlation coefficient (PCC) between US 
tracking and external marker movement in breath-hold phase for each healthy 
volunteer 

Statistical Correlation Renal pelvis Portal vein /  
liver vein branches 

 AP Direction 
(n) 

SI Direction 
(n) 

AP Direction 
(n) 

SI Direction 
(n) 

Healthy Volunteer 1     

Strong PCC (0.70 – 1) 15 15 9 12 

Weak PCC (0.50 – 0.69) 0 1 2 0 

None PCC (0 – 0.49) 1 0 1 0 

Healthy Volunteer 2     

Strong PCC (0.70 – 1) 15 15 12 12 

Weak PCC (0.50 – 0.69) 0 0 1 2 

None PCC (0 – 0.49) 0 0 1 0 

Healthy Volunteer 3     

Strong PCC (0.70 – 1) 12 13 13 14 

Weak PCC (0.50 – 0.69) 3 1 0 0 

None PCC (0 – 0.49) 0 1 1 0 

Healthy Volunteer 4     

Strong PCC (0.70 – 1) 12 16 12 15 

Weak PCC (0.50 – 0.69) 6 3 2 3 

None PCC (0 – 0.49) 1 1 2 0 

Healthy Volunteer 5     

Strong PCC (0.70 – 1) 7 7 7 7 

Weak PCC (0.50 – 0.69) 0 0 0 0 

None PCC (0 – 0.49) 0 0 0 0 
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3.5 Upper abdominal target monitoring in patients treated by DIBH-SBRT – intra 

breath-hold residual motion during CBCT and beam delivery 

There were 639 individual DIBHs during 117 CBCT sessions and 509 individual BHs 

during the beam delivery of 61 treatment sessions that have been analyzed. On 

visual control of results during CBCT, target was lost in 27.9% of tracking, leaving 

490 BHs with optimal tracking in CBCT session. The overall mean(±SD) target 

displacement during BHs in CBCT session were 1.58(±0.77) mm, 0.77(±0.34) mm, 

2.10(±0.86) mm and 3.02(±0.97) mm for SI, LR, AP and 3D vector, respectively. For 

treatment session, the mean(±SD) target displacement were 1.33(±0.54) mm, 

0.71(±0.25) mm, 1.58(±0.62) mm and 2.48(±0.66) mm for SI, LR, AP and 3D vector, 

respectively. 

Most of the target displacements were below 2 mm in CBCT and treatment 

session as well, with percentage of 69.1%, 90.0%, 62.7% and 42.6% of data for SI, 

LR, AP and 3D vector, respectively for CBCT session. The complete result of target 

displacement can be seen in Table 15 and Figure 29. For the treatment session, 

target displacements below 2 mm were 74.6%, 92.7%, 70.9%, and 49.8% of data for 

SI, LR, AP and 3D vector, respectively. The complete result of target displacement 

can be seen in Table 16 and Figure 30.  

 

Table 15. Target displacement in SI, LR, AP and 3D vector (in % of data) during 
CBCT acquisition in repeated DIBH 

Target Displacement  
(% of data) 

SI  LR  AP  3D 
Vector 

< 2 mm  69.1 90.0 62.7 42.6 
2 ‐ 5 mm  25.1 9.4 30.0 39.6 
5 ‐ 7 mm  4.4 0.5 4.7 10.9 
7 ‐ 10 mm  1.2 0.1 2.3 5.8 
> 10 mm  0.1 0.0 0.3 1.2 

 
Table 16. Target displacement in SI, LR, AP and 3D vector (in %) at treatment 
session (during beam delivery) 

Target Displacement  
(% of data) 

SI  LR  AP  3D 
Vector 

< 2 mm  74.6 92.7 70.9 49.8 
2 ‐ 5 mm  21.4 6.7 24.9 38.3 
5 ‐ 7 mm  3.3 0.4 2.9 8.0 
7 ‐ 10 mm  0.6 0.1 1.1 3.1 
> 10 mm  0.1 0.2 0.1 0.8 
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Table 20. Mean target displacement during BH for each patient in treatment session 

Patient Fraction BH 
Count 

Mean target displacement (mm) 
SI Direction RL Direction AP Direction 3D Vector 

1 11 80 2.55 + 1.41 1.15 + 0.66 1.80 + 1.16 3.60 + 1.45 
2 11 87 1.22 + 1.07 0.40 + 0.35 0.64 + 0.66 1.63 + 1.12 
4 3 25 1.07 + 0.83 1.02 + 1.23 0.99 + 1.12 2.15 + 1.48 
5 11 98 1.67 + 1.22 0.57 + 0.55 2.00 + 1.42 2.86 + 1.74 
10 5 47 0.96 + 0.70 0.81 + 0.68 2.61 + 1.51 3.09 + 1.50 
12 5 42 0.82 + 0.72 0.66 + 0.60 1.43 + 1.00 1.97 + 1.16 
13 5 51 1.60 + 1.08 0.65 + 0.47 2.14 + 1.06 2.95 + 1.29 
14 4 35 1.18 + 1.03 0.47 + 0.45 1.47 + 1.25 2.19 + 1.45 
15 6 44 0.94 + 0.72 0.64 + 0.61 1.15 + 0.99 1.88 + 1.09 
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4 DISCUSSION 

4.1 System Integrity Quality Assurance 

There is a new growing interest in US IGRT developments lately, even though it has 

been around for several years. The Clarity 3DUS guidance system, a 3D 

intramodality system, was introduced in 2004.79 The intramodality approach entails 

comparison of an US image made treatment stage, with a reference US image, 

acquired at the time of CT simulation, and therefore compares like with like. 

Primarily, the US system itself has to be accurate, and the system has to be 

fully understood to avoid mistakes and misusage. The system tests based on the 

standard QA phantom showed that the overall geometric accuracy of the Clarity 3D 

ultrasound system fulfilled the requirements and were inside the acceptance criteria. 

The precision of an installation for ultrasound based patient positioning has been 

evaluated by Ballhausen et al. 80 and S. van der Meer et al.79 They reported that the 

average quality control results for planning-side and treatment-side 3D US together 

were 0.74 ± 0.57 mm. They found that the Clarity 3DUS guidance system is a robust 

IGRT device that guides the patient to the correct treatment position. 

One of the major concerns for US IGRT is the user variability. Not only is the 

acquisition of the image for most US systems still performed manually, the images 

may also be more difficult to interpret than e.g. a CT or MR image. The complete 

body contour is not visible on an US image, therefore structures may be more difficult 

to identify on an US image. User experience and training have been shown to 

improve the consistency and reproducibility of US image interpretation among users. 

The accuracy of the prostate monitoring algorithm of Clarity system has been 

validated by Lachaine et al.69 Their experiment was used an ultrasound phantom on 

a motion platform with certain motion patterns. The mean and standard deviation of 

the differences between the measured and reference of their result to be 0.2 + 0.4 

mm, -0.2 + 0.2 mm, and -0.0 + 0.2 mm, in the LR, AP, and SI directions, respectively. 

Our result has good agreement with Lachaine et al., which are 0.3 + 0.2 mm, 0.2 + 

0.1 mm and 0.1 + 0.1 mm in the LR, AP, and SI directions, respectively. Abramowitz 

et al.81 performed a comparison study between the Clarity TPUS autoscan system 

and the Calypso system (Varian Medical Systems, Palo Alto, CA, USA), the system 

that utilizes transponders implanted into the prostate for positional tracking. They 
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designed a motorized phantom combined with a prostate-equivalent structure. They 

found good agreement between the two systems in tracking the embedded prostate-

like sphere.82  

4.2 Prostate intrafraction motion 

Intrafraction prostate motion has been evaluated using various techniques, such as 

kilovoltage (kV) and megavoltage (MV) imaging of implanted fiducials 83-85, magnetic 

resonance imaging (MRI) 86, 87, implanted electromagnetic transponders 88, 89, and 

ultrasound.90 

Several studies have confirmed that the motion of the prostate is random, 

sporadic, and patient specific, which makes the prediction of the prostate motion 

difficult.91 Even for one patient, the prostate motion can be different form one fraction 

to another fraction.18 The intrafractional prostate movements were generally small (< 

2 mm) as shown in this study but could be also more than 5 mm for some patients. 

This result was consistent with other reports.92, 93 

Prostate displacements were occasional fast drift (e.g., due to muscle 

contraction), short-term drift (e.g., due to gas passage), continuous drift (e.g., due to 

rectal/bladder filling), and the combination of various movements. The smallest 

motion occurred in the LR direction, the AP and SI shifts were often occasional or 

short-term due to gas passage and sometimes correlated with each other.93, 94 

The mean values of the prostate displacement indicate the prostate drifts more 

into the posterior and inferior direction in AP and SI direction, respectively. This 

phenomenon has been also reported by other researchers.17, 89, 92 Langen et al. 

reported that long treatment times result in an increasing frequency of large 

displacements, which was also seen in our study. Shortening the treatment time 

should therefore be an important objective as more than 5 mm motion has been 

observed during regular IMRT treatment for some patients.17, 89, 92 

The feasibility of hypofractionated radiotherapy as new standard of care for 

external-beam radiotherapy of localized prostate cancer,50 made it having longer 

treatment times and thus increase the risk of irradiating a substantial amount of high 

dose outside the target. Adamson et al.95 reported that for protocols with CBCT 

guidance in hypofractionated radiotherapy, RL, AP, and SI margins of 2, 4, and 3 mm 

are sufficient to account for translational errors. However, the large variation in 
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patient-specific margins suggests that adaptive motion management may be 

beneficial.96 

Nevertheless, the systematic error (Σ) and the random error (σ) of intrafraction 

motion found in this report were small. The systematic errors reported by Litzenberg 

et al. 97 included setup errors and were larger, with Σ = 0.67 mm, 2.15 mm and 2.62 

mm in the LR, AP and SI direction, respectively.  

However, due to the very asymmetric distribution of prostate motion probability, 

fixed margin to compensate for intrafraction motion are not completely suitable to 

account for accurate motion compensation. At the beginning of fraction, the motion 

can be over-compensated while at the end of the fraction, the margin could be not 

sufficient anymore. This emphasizes again the need for online tracking and position 

correction to take into account intrafraction motion in an optimal manner.91 

 

4.3 Upper abdominal target monitoring – phantom study 

Daily online interfractional soft tissue imaging has become standard in radiotherapy. 

Non-invasive US-based IGRT for positioning of upper abdominal lesions has 

previously been shown to improve positioning accuracy.19, 98 To enable complete 

intrafractional control of DIBH treatments, that have several procedural and 

dosimetric advantages in photon and particle therapy,22 real-time soft tissue tracking 

is necessary. Currently most tracking methods available in the clinical routine for this 

purpose are using implanted fiducials or external/surface based tracking.99-101 

Usability and accuracy of a real-time 4D US tracking system under DIBH for 

abdominal targets without invasive placement of fiducials has been evaluated under 

experimental conditions in this paper. Harris et al.102 have shown that accuracies of 

greater than 1 mm (similar to our results) can be achieved for 3D sinusoidal motion 

sequences using incremental 3D speckle tracking of a 4D US system in tissue 

phantom measurements. Our results are also in the range of what has been reported 

for other non-ultrasound based tracking approaches. Willoughby et al.88 reported that 

the Calypso system (based on implanted electromagnetic markers), was 1.5 mm ± 

0.9 mm for prostate motion. Shirato et al.103 determined the 3D tracking accuracy of a 

tracking system based on implanted fiducial markers and fluoroscopy using phantom-

based experiments to be 1.5 mm. Given these overall results, ultrasound tracking has 

the potential to be used in lieu of fluoroscopy tracking measurements to eliminate 
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invasive marker implantation and costs/side effects associated with fluoroscopic 

markers and the associated radiation doses to patients.104 

The limitation of these data is that they have been acquired in the phantom 

environment with a spherical tracked structure ideal for the tracking algorithm. 

Tracking robustness might be different in the human body with less clear interfaces 

and more complex, non-spherical structures suitable for tracking. In a second step 

we therefore performed an in-vivo analysis with healthy volunteers.  

4.4 Upper abdominal lesions target monitoring – healthy volunteer 

As a crucial element of the process, the probe holder can hold the probe effectively in 

place for prolonged measurement duration. The probe kept completely steady during 

measurement but seems to retain a minimal flexibility that will be needed in a clinical 

application.71 Online comparison with a gold standard (fiducials) is certainly not 

possible in volunteers but we could assess the correlation of motion timing and 

orientation with surface markers as a first plausibility test. Correlation data between 

external marker and organ motion was comparable with the results reported from 

Fayad et al 105, that used external marker and 4D CT datasets. They found that the 

highest correlation coefficients between the motion of external surface areas and 

internal landmarks such as the diaphragm and mediastinal structures as well as the 

tumor location landmarks were 0.8 ± 0.18 mm and 0.72 ± 0.12 mm for the abdominal 

and the thoracic regions, respectively.  

Lost tracking occurred due to the target not being covered entirely by the 

sweeping range, especially at a low scanning range. An optimal trade-off between 

scanning range and scanning frequency has therefore to be found for each target. In 

addition, further improvement of the tracking algorithm will improve accuracy along 

with respiratory motion if using larger scanning angles for detection of high-amplitude 

motion and non-linear transformations of the tracking target. Nevertheless, the 

additional use of US surveillance of DIBH treatments would already be possible with 

manual on-line validation of the plausibility of the tracking.  

4.5 Upper abdominal target monitoring - intrafraction motion in breath-hold (patient 

data) 

The residual motion of the tracking target during computer-based DIBH assessed by 

online US-based tracking has been verified by correlated to offline position 
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determination of the diaphragm-dome according to a noninvasive approach.77 The 

offline kV CBCT data show that US tracking has a strong correlation with the 

diaphragm motion in most patients. 

The results from this study are in line with other reports. Organ motion during 

inhale breath-hold has been investigated for lung cancer patients; studies have 

reported motion magnitudes during inhale breath-hold of up to approximately 5.4 mm 

for the diaphragm and 3.8 mm for lung tumors.106, 107 Other study reported the 

pancreatic tumor motion during 30-second inhale breath-hold of up to 11 mm and 8 

mm in SI and AP direction, respectively.108 For institutions using DIBH but no 

additional monitoring tools, a SI safety margin of 10 mm is sufficient, to compensate 

for residual motion during BHs.  

To reduce further residual errors, faster methods of imaging and delivery are 

needed. Fast imaging with a combination of kV and MV beam 109, 110 is an accurate 

method for obtaining 3D CBCT data collection for a single BH. Clinical 

implementation will accelerate the daily IGRT interface and with that, reduce errors 

that occur between each BH. In addition to the available fast delivery technique,111 

the acceleration of further treatment delivery is ongoing. In an ideal situation, imaging 

and delivery will be possible with a total of no more than 3 BH in the future.77  
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5 CONCLUSION 

The results of the performed Clarity QA measurement showed an accuracy of 

maximal 0.5 mm in all phantom and probe combinations which met clinically 

acceptable range < 1 mm.  

The 4D US system offers a non-invasive method for online organ motion 

monitoring without additional ionizing radiation dose to the patient. On average, the 

smallest intrafraction prostate motion was in the LR direction (0.01 + 0.30 mm) and 

the largest in AP direction (-0.08 + 0.34 mm). The magnitudes of intrafraction 

prostate motion along the SI and AP directions were comparable, with the mean 

value of -0.08 mm and 0.05 mm for SI and AP, respectively. There were 84.42% of 

the 3D vector prostate displacements that were less than 2 mm. However, with 

increased treatment time, larger 3D vector prostate displacements up to 18.3 mm 

could be observed. Shortening the treatment time can reduce the intrafraction motion 

and its effects and US monitoring can help to maximize treatment precision 

particularly in hypofractionated treatment regimens.  

The evaluation of 4D US system for upper abdominal organ monitoring during 

breath-hold application showed a good performance of tracking accuracy in a 4D 

motion phantom when tracking a target that moves in accordance to a simulating 

breathing pattern. A 30°scanning range turned out to be an optimal parameter to 

track along with respiratory motion considering the accuracy of tracking and the 

possible loss of the tracked structure. The ultrasound tracking system is also 

applicable to a clinical setup with the tested hardware solution. The tracking 

capability of surrogate structures for upper abdominal lesions in DIBH is promising 

but needs further investigation in a larger cohort of patients. Ultrasound motion data 

show a strong correlation (Pearson correlation coefficient > 0.7) with surface motion 

data for 86.64% of individual breath-holds. Further improvement of the tracking 

algorithm is suggested to improve accuracy along with respiratory motion if using 

larger scanning angles for detection of high-amplitude motion and non-linear 

transformations of the tracking target. 

The exact quantification of residual motion impact requires an in-depth analysis 

of time spent at every position, nevertheless mean residual motion during DIBH is 

low with 80.56% of data were less than 2 mm, predominant in SI and AP direction. 
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Larger displacements of 3D vector >1cm were only infrequently observed (1.2%), for 

short periods less than 3 sec. Beam interruption at a predefined threshold could take 

DIBH treatments close to perfection. 
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