64 research outputs found

    Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis

    Get PDF
    Sporadic colon cancer is caused predominantly by dietary factors. We have selected bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-induced stresses cause cell death in susceptible cells, contribute to genomic instability in surviving cells, impose Darwinian selection on survivors and enhance initiation and progression to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result in the activation of pro-survival stress-response pathways, and the modulation of numerous genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms by which hydrophobic bile acids contribute to genomic instability are discussed, and include oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and increased genomic instability through this mechanism is also described. This review provides a mechanistic explanation for the important link between a Western-style diet and associated increased levels of colon cancer

    Deoxycholate, an Endogenous Cytotoxin/Genotoxin, Induces the Autophagic Stress-Survival Pathway: Implications for Colon Carcinogenesis

    Get PDF
    We report that deoxycholate (DOC), a hydrophobic bile acid associated with a high-fat diet, activates the autophagic pathway in non-cancer colon epithelial cells (NCM-460), and that this activation contributes to cell survival. The DOC-induced increase in autophagy was documented by an increase in autophagic vacuoles (detected using transmission electron microscopy, increased levels of LC3-I and LC3-II (western blotting), an increase in acidic vesicles (fluorescence spectroscopy of monodansycadaverine and lysotracker red probes), and increased expression of the autophagic protein, beclin-1 (immunohistochemistry/western blotting). The DOC-induced increase in beclin-1 expression was ROS-dependent. Rapamycin (activator of autophagy) pre-treatment of NCM-460 cells significantly (P < .05) decreased, and 3-MA (inhibitor of autophagy) significantly (P < .05) increased the cell loss caused by DOC treatment, alone. Rapamycin pre-treatment of the apoptosis-resistant colon cancer cell line, HCT-116RC (developed in our laboratory), resulted in a significant decrease in DOC-induced cell death. Bafilomycin A1 and hydroxychloroquine (inhibitors of the autophagic process) increased the DOC-induced percentage of apoptotic cells in HCT-116RC cells. It was concluded that the activation of autophagy by DOC has important implications for colon carcinogenesis and for the treatment of colon cancer in conjunction with commonly used chemotherapeutic agents

    The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    Get PDF
    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis

    Role of interleukin-6 in Barrett’s esophagus pathogenesis

    No full text

    Letter to the Editor: The response to Dr. Yang

    No full text

    Bile acids as endogenous etiologic agents in gastrointestinal cancer

    No full text
    Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis, include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term, and selection for apoptosis resistance in the long term. These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development
    corecore