566 research outputs found
Vitamin A and Total Protein Levels in the Blood Plasma of Piglets During Their Postnatal Development
Fast Dynamic Graph Algorithms for Parameterized Problems
Fully dynamic graph is a data structure that (1) supports edge insertions and
deletions and (2) answers problem specific queries. The time complexity of (1)
and (2) are referred to as the update time and the query time respectively.
There are many researches on dynamic graphs whose update time and query time
are , that is, sublinear in the graph size. However, almost all such
researches are for problems in P. In this paper, we investigate dynamic graphs
for NP-hard problems exploiting the notion of fixed parameter tractability
(FPT).
We give dynamic graphs for Vertex Cover and Cluster Vertex Deletion
parameterized by the solution size . These dynamic graphs achieve almost the
best possible update time and the query time
, where is the time complexity of any static
graph algorithm for the problems. We obtain these results by dynamically
maintaining an approximate solution which can be used to construct a small
problem kernel. Exploiting the dynamic graph for Cluster Vertex Deletion, as a
corollary, we obtain a quasilinear-time (polynomial) kernelization algorithm
for Cluster Vertex Deletion. Until now, only quadratic time kernelization
algorithms are known for this problem.
We also give a dynamic graph for Chromatic Number parameterized by the
solution size of Cluster Vertex Deletion, and a dynamic graph for
bounded-degree Feedback Vertex Set parameterized by the solution size. Assuming
the parameter is a constant, each dynamic graph can be updated in
time and can compute a solution in time. These results are obtained by
another approach.Comment: SWAT 2014 to appea
- …