43 research outputs found
Black Hole Formation and Classicalization in Ultra-Planckian 2 -> N Scattering
We establish a connection between the ultra-Planckian scattering amplitudes
in field and string theory and unitarization by black hole formation in these
scattering processes. Using as a guideline an explicit microscopic theory in
which the black hole represents a bound-state of many soft gravitons at the
quantum critical point, we were able to identify and compute a set of
perturbative amplitudes relevant for black hole formation. These are the
tree-level N-graviton scattering S-matrix elements in a kinematical regime
(called classicalization limit) where the two incoming ultra-Planckian
gravitons produce a large number N of soft gravitons. We compute these
amplitudes by using the Kawai-Lewellen-Tye relations, as well as scattering
equations and string theory techniques. We discover that this limit reveals the
key features of the microscopic corpuscular black hole N-portrait. In
particular, the perturbative suppression factor of a N-graviton final state,
derived from the amplitude, matches the non-perturbative black hole entropy
when N reaches the quantum criticality value, whereas final states with
different value of N are either suppressed or excluded by non-perturbative
corpuscular physics. Thus we identify the microscopic reason behind the black
hole dominance over other final states including non-black hole classical
object. In the parameterization of the classicalization limit the scattering
equations can be solved exactly allowing us to obtain closed expressions for
the high-energy limit of the open and closed superstring tree-level scattering
amplitudes for a generic number N of external legs. We demonstrate matching and
complementarity between the string theory and field theory in different large-s
and large-N regimes.Comment: 55 pages, 7 figures, LaTeX; v2: typos removed; final version to
appear in Nucl. Phys.
Suppressing Quantum Fluctuations in Classicalization
We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons -
derivatively coupled single scalar-field theories possessing shift-symmetry in
field space. We argue that quantum fluctuations of the interacting field can be
drastically suppressed with respect to the free-field case. Moreover, the
power-spectrum of these fluctuations can soften to become red for sufficiently
small scales. In quasiclassical approximation, we demonstrate that this
suppression can only occur for those theories that admit such classical static
backgrounds around which small perturbations propagate faster than light. Thus,
a quasiclassical softening of quantum fluctuations is only possible for
theories which classicalize instead of having a usual Lorentz invariant and
local Wilsonian UV- completion. We illustrate our analysis by estimating the
quantum fluctuations for the DBI-like theories.Comment: 6 pages, no figures, published version, more general discussion of
uncertainty relation in QFT, improved and more general derivation of the main
resul
UV-Completion by Classicalization
We suggest a novel approach to UV-completion of a class of non-renormalizable
theories, according to which the high-energy scattering amplitudes get
unitarized by production of extended classical objects (classicalons), playing
a role analogous to black holes, in the case of non-gravitational theories. The
key property of classicalization is the existence of a classicalizer field that
couples to energy-momentum sources. Such localized sources are excited in
high-energy scattering processes and lead to the formation of classicalons. Two
kinds of natural classicalizers are Nambu-Goldstone bosons (or, equivalently,
longitudinal polarizations of massive gauge fields) and scalars coupled to
energy-momentum type sources. Classicalization has interesting phenomenological
applications for the UV-completion of the Standard Model both with or without
the Higgs. In the Higgless Standard Model the high-energy scattering amplitudes
of longitudinal -bosons self-unitarize via classicalization, without the
help of any new weakly-coupled physics. Alternatively, in the presence of a
Higgs boson, classicalization could explain the stabilization of the hierarchy.
In both scenarios the high-energy scatterings are dominated by the formation of
classicalons, which subsequently decay into many particle states. The
experimental signatures at the LHC are quite distinctive, with sharp
differences in the two cases.Comment: 37 page
Probing Quantum Geometry at LHC
We present an evidence, that the volumes of compactified spaces as well as
the areas of black hole horizons must be quantized in Planck units. This
quantization has phenomenological consequences, most dramatic being for micro
black holes in the theories with TeV scale gravity that can be produced at LHC.
We predict that black holes come in form of a discrete tower with well defined
spacing. Instead of thermal evaporation, they decay through the sequence of
spontaneous particle emissions, with each transition reducing the horizon area
by strictly integer number of Planck units. Quantization of the horizons can be
a crucial missing link by which the notion of the minimal length in gravity
eliminates physical singularities. In case when the remnants of the black holes
with the minimal possible area and mass of order few TeV are stable, they might
be good candidates for the cold dark matter in the Universe.Comment: 14 pages, Late
Solitonic D-branes and brane annihilation
We point out some intriguing analogies between field theoretic solitons
(topological defects) and D-branes. Annihilating soliton-antisoliton pairs can
produce stable solitons of lower dimensionality. Solitons that localize
massless gauge fields in their world volume automatically imply the existence
of open flux tubes ending on them and closed flux tubes propagating in the
bulk. We discuss some aspects of this localization on explicit examples of
unstable wall-anti-wall systems. The annihilation of these walls can be
described in terms of tachyon condensation which renders the world-volume gauge
field non-dynamical. During this condensation the world volume gauge fields
(open string states) are resonantly excited. These can later decay into closed
strings, or get squeezed into a network flux tubes similar to a network of
cosmic strings formed at a cosmological phase transition. Although, as in the
-brane case, perturbatively one can find exact time-dependent solutions,
when the energy of the system stays localized in the plane of the original
soliton, such solutions are unstable with respect to decay into open and closed
string states. Thus, when a pair of such walls annihilates, the energy is
carried away (at least) by closed string excitations (``glueballs''), which are
the lowest energy excitations about the bulk vacuum. Suggested analogies can be
useful for the understanding of the complicated D-brane dynamics and of the
production of topological defects and reheating during brane collision in the
early universe.Comment: a typo correcte
Classicalization of Gravitons and Goldstones
We establish a close parallel between classicalization of gravitons and
derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole
formation in high energy scattering process represents classicalization with
the classicalization radius given by Schwarzschild radius of center of mass
energy, and with the precursor of black hole entropy being given by number of
soft quanta composing this classical configuration. Such an entropy-equivalent
is defined for scalar classicalons also and is responsible for exponential
suppression of their decay into small number of final particles. This parallel
works in both ways. For optimists that are willing to hypothesize that gravity
may indeed self-unitarize at high energies via black hole formation, it
illustrates that the Goldstones may not be much different in this respect, and
they classicalize essentially by similar dynamics as gravitons. In the other
direction, it may serve as an useful de-mystifier of
via-black-hole-unitarization process and of the role of entropy in it, as it
illustrates, that much more prosaic scalar theories essentially do the same.
Finally, it illustrates that in both cases classicalization is the defining
property for unitarization, and that it sets-in before one can talk about
accompanying properties, such as entropy and thermality of static classicalons
(black holes). These properties are by-products of classicalization, and their
equivalents can be defined for non-gravitational cases of classicalization.Comment: 23 page
Primordial black holes from cosmic necklaces
Cosmic necklaces are hybrid topological defects consisting of monopoles and
strings. We argue that primordial black holes(PBHs) may have formed from loops
of the necklaces, if there exist stable winding states, such as coils and
cycloops. Unlike the standard scenario of PBH formation from string loops, in
which the kinetic energy plays important role when strings collapse into black
holes, the PBH formation may occur in our scenario after necklaces have
dissipated their kinetic energy. Then, the significant difference appears in
the production ratio. In the standard scenario, the production ratio
becomes a tiny fraction , however it becomes in our
case. On the other hand, the typical mass of the PBHs is much smaller than the
standard scenario, if they are produced in the same epoch. As the two
mechanisms may work at the same time, the necklaces may have more than one
channel of the gravitational collapse. Although the result obtained in this
paper depends on the evolution of the dimensionless parameter , the
existence of the winding state could be a serious problem in some cases. Since
the existence of the winding state in brane models is due to the existence of a
non-tivial circle in the compactified space, the PBH formation can be used to
probe the structure of the compactified space. Black holes produced by this
mechanism may have peculiar properties.Comment: 22pages, 3 figures, added many comments, +1 figure, accepted for
publication in JHE
Multiple Inflation, Cosmic String Networks and the String Landscape
Motivated by the string landscape we examine scenarios for which inflation is
a two-step process, with a comparatively short inflationary epoch near the
string scale and a longer period at a much lower energy (like the TeV scale).
We quantify the number of -foldings of inflation which are required to yield
successful inflation within this picture. The constraints are very sensitive to
the equation of state during the epoch between the two inflationary periods, as
the extra-horizon modes can come back inside the horizon and become
reprocessed. We find that the number of -foldings during the first
inflationary epoch can be as small as 12, but only if the inter-inflationary
period is dominated by a network of cosmic strings (such as might be produced
if the initial inflationary period is due to the brane-antibrane mechanism). In
this case a further 20 -foldings of inflation would be required at lower
energies to solve the late universe's flatness and horizon problems.Comment: 27 pages, 6 figures; v2: refences adde
On Brane Inflation With Volume Stabilization
The distance between BPS branes in string theory corresponds to a flat
direction in the effective potential. Small deviations from supersymmetry may
lead to a small uplifting of this flat direction and to brane inflation.
However, this scenario can work only if the BPS properties of the branes and
the corresponding flatness of the inflaton potential are preserved in the
theories with the stable volume compactification. We present an ``inflaton
trench'' mechanism that keeps the inflaton potential flat due to shift
symmetry, which is related to near BPS symmetry in our model.Comment: 12 pages, 2 figure
Formation of monopoles and domain walls after brane inflation
We study cosmological defect formation after brane inflation. The
cosmological defects are corresponding to the branes that have less than three
spacial dimensions in the uncompactified spacetime. Contrary to the previous
arguments, production of monopoles and domain walls are not always negligible.
Monopoles and domain walls are formed by the branes extended between mother
branes.Comment: 27pages, 7 figures, many comments, footnotes and reviews are added,
to appear in JHE