79 research outputs found

    Performance of polar codes for quantum and private classical communication

    Get PDF
    We analyze the practical performance of quantum polar codes, by computing rigorous bounds on block error probability and by numerically simulating them. We evaluate our bounds for quantum erasure channels with coding block lengths between 2^10 and 2^20, and we report the results of simulations for quantum erasure channels, quantum depolarizing channels, and "BB84" channels with coding block lengths up to N = 1024. For quantum erasure channels, we observe that high quantum data rates can be achieved for block error rates less than 10^(-4) and that somewhat lower quantum data rates can be achieved for quantum depolarizing and BB84 channels. Our results here also serve as bounds for and simulations of private classical data transmission over these channels, essentially due to Renes' duality bounds for privacy amplification and classical data transmission of complementary observables. Future work might be able to improve upon our numerical results for quantum depolarizing and BB84 channels by employing a polar coding rule other than the heuristic used here.Comment: 8 pages, 6 figures, submission to the 50th Annual Allerton Conference on Communication, Control, and Computing 201

    Channelization architecture for wide-band slow light in atomic vapors

    Full text link
    We propose a ``channelization'' architecture to achieve wide-band electromagnetically induced transparency (EIT) and ultra-slow light propagation in atomic Rb-87 vapors. EIT and slow light are achieved by shining a strong, resonant ``pump'' laser on the atomic medium, which allows slow and unattenuated propagation of a weaker ``signal'' beam, but only when a two-photon resonance condition is satisfied. Our wideband architecture is accomplished by dispersing a wideband signal spatially, transverse to the propagation direction, prior to entering the atomic cell. When particular Zeeman sub-levels are used in the EIT system, then one can introduce a magnetic field with a linear gradient such that the two-photon resonance condition is satisfied for each individual frequency component. Because slow light is a group velocity effect, utilizing differential phase shifts across the spectrum of a light pulse, one must then introduce a slight mismatch from perfect resonance to induce a delay. We present a model which accounts for diffusion of the atoms in the varying magnetic field as well as interaction with levels outside the ideal three-level system on which EIT is based. We find the maximum delay-bandwidth product decreases with bandwidth, and that delay-bandwidth product ~1 should be achievable with bandwidth ~50 MHz (~5 ns delay). This is a large improvement over the ~1 MHz bandwidths in conventional slow light systems and could be of use in signal processing applications.Comment: Published in SPIE Proceedings, Photonics West 2005 (San Jose, CA, Jan. 22-27, 2005

    Observation of Quantum Shock Waves Created with Ultra Compressed Slow Light Pulses in a Bose-Einstein Condensate

    Full text link
    We have used an extension of our slow light technique to provide a method for inducing small density defects in a Bose-Einstein condensate. These sub-resolution, micron-sized defects evolve into large amplitude sound waves. We present an experimental observation and theoretical investigation of the resulting breakdown of superfluidity. We observe directly the decay of the narrow density defects into solitons, the onset of the `snake' instability, and the subsequent nucleation of vortices.Comment: 15 pages, 5 figure

    Effective one-component description of two-component Bose-Einstein condensate dynamics

    Full text link
    We investigate dynamics in two-component Bose-Einstein condensates in the context of coupled Gross-Pitaevskii equations and derive results for the evolution of the total density fluctuations. Using these results, we show how, in many cases of interest, the dynamics can be accurately described with an effective one-component Gross-Pitaevskii equation for one of the components, with the trap and interaction coefficients determined by the relative differences in the scattering lengths. We discuss the model in various regimes, where it predicts breathing excitations, and the formation of vector solitons. An effective nonlinear evolution is predicted for some cases of current experimental interest. We then apply the model to construct quasi-stationary states of two-component condensates.Comment: 8 pages, 4 figure

    First-order sidebands in circuit QED using qubit frequency modulation

    Full text link
    Sideband transitions have been shown to generate controllable interaction between superconducting qubits and microwave resonators. Up to now, these transitions have been implemented with voltage drives on the qubit or the resonator, with the significant disadvantage that such implementations only lead to second-order sideband transitions. Here we propose an approach to achieve first-order sideband transitions by relying on controlled oscillations of the qubit frequency using a flux-bias line. Not only can first-order transitions be significantly faster, but the same technique can be employed to implement other tunable qubit-resonator and qubit-qubit interactions. We discuss in detail how such first-order sideband transitions can be used to implement a high fidelity controlled-NOT operation between two transmons coupled to the same resonator.Comment: 15 pages, 5 figure

    On quantum limit of optical communications: concatenated codes and joint-detection receivers

    Get PDF
    When classical information is sent over a channel with quantum-state modulation alphabet, such as the free-space optical (FSO) channel, attaining the ultimate (Holevo) limit to channel capacity requires the receiver to make joint measurements over long codeword blocks. In recent work, we showed a receiver for a pure-state channel that can attain the ultimate capacity by applying a single-shot optical (unitary) transformation on the received codeword state followed by simultaneous (but separable) projective measurements on the single-modulation-symbol state spaces. In this paper, we study the ultimate tradeoff between photon efficiency and spectral efficiency for the FSO channel. Based on our general results for the pure-state quantum channel, we show some of the first concrete examples of codes and laboratory-realizable joint-detection optical receivers that can achieve fundamentally higher (superadditive) channel capacity than receivers that physically detect each modulation symbol one at a time, as is done by all conventional (coherent or direct-detection) optical receivers.Comment: 5 pages, 7 figures, submitted to IEEE International Symposium on Information Theory (ISIT), 201

    Detecting changes to sub-diffraction objects with quantum-optimal speed and accuracy

    Full text link
    Detecting if and when objects change is difficult in passive sub-diffraction imaging of dynamic scenes. We consider the best possible tradeoff between responsivity and accuracy for detecting a change from one arbitrary object model to another in the context of sub-diffraction incoherent imaging. We analytically evaluate the best possible average latency, for a fixed false alarm rate, optimizing over all physically allowed measurements of the optical field collected by a finite 2D aperture. We find that direct focal-plane detection of the incident optical intensity achieves sub-optimal detection latencies compared to the best possible average latency, but that a three-mode spatial-mode demultiplexing measurement in concert with on-line statistical processing using the well-known CUSUM algorithm achieves this quantum limit for sub-diffraction objects. We verify these results via Monte Carlo simulation of the change detection procedure and quantify a growing gap between the conventional and quantum-optimal receivers as the objects are more and more diffraction-limited.Comment: 4 pages, 3 figure
    • …
    corecore