90 research outputs found

    Translating Concepts of State Transfer to Spin-1 Chains

    Full text link
    State transfer is a well-known routine for various systems of spins-12\frac{1}2. Still, it is not well studied for chains of spins of larger magnitudes. In this contribution we argue that while perfect state transfer may seem unnatural in spin-1 systems, it is still feasible for arrays of V-type three-level atoms. Tomography of such 1D array is also shown to be possible by acting on one atom from such an array

    (1,j)(1,j)-set problem in graphs

    Full text link
    A subset D⊆VD \subseteq V of a graph G=(V,E)G = (V, E) is a (1,j)(1, j)-set if every vertex v∈V∖Dv \in V \setminus D is adjacent to at least 11 but not more than jj vertices in D. The cardinality of a minimum (1,j)(1, j)-set of GG, denoted as γ(1,j)(G)\gamma_{(1,j)} (G), is called the (1,j)(1, j)-domination number of GG. Given a graph G=(V,E)G = (V, E) and an integer kk, the decision version of the (1,j)(1, j)-set problem is to decide whether GG has a (1,j)(1, j)-set of cardinality at most kk. In this paper, we first obtain an upper bound on γ(1,j)(G)\gamma_{(1,j)} (G) using probabilistic methods, for bounded minimum and maximum degree graphs. Our bound is constructive, by the randomized algorithm of Moser and Tardos [MT10], We also show that the (1,j)(1, j)- set problem is NP-complete for chordal graphs. Finally, we design two algorithms for finding γ(1,j)(G)\gamma_{(1,j)} (G) of a tree and a split graph, for any fixed jj, which answers an open question posed in [CHHM13]
    • …
    corecore