2,948 research outputs found

    Acoustic gravity waves: A computational approach

    Get PDF
    This paper discusses numerical solutions of a hyperbolic initial boundary value problem that arises from acoustic wave propagation in the atmosphere. Field equations are derived from the atmospheric fluid flow governed by the Euler equations. The resulting original problem is nonlinear. A first order linearized version of the problem is used for computational purposes. The main difficulty in the problem as with any open boundary problem is in obtaining stable boundary conditions. Approximate boundary conditions are derived and shown to be stable. Numerical results are presented to verify the effectiveness of these boundary conditions

    A Demountable All Metal Hot-Cathode Vacuum Ionisation Gauge

    Get PDF

    On the Large Load Characteristics of Vapour Pumps

    Get PDF
    The different characteristics of vapour pumps under various leak-load and forepressure conditions are studied. The leak load position dependence of forepressure is investigated from which different conditions of critical forepressure are distinguished

    Energy and momentum relaxation of heavy fermion in dense and warm plasma

    Full text link
    We determine the drag and the momentum diffusion coefficients of heavy fermion in dense plasma. It is seen that in degenerate matter drag coefficient at the leading order mediated by transverse photon is proportional to (Eμ)2(E-\mu)^2 while for the longitudinal exchange this goes as (Eμ)3(E-\mu)^3. We also calculate the longitudinal diffusion coefficient to obtain the Einstein relation in a relativistic degenerate plasma. Finally, finite temperature corrections are included both for the drag and the diffusion coefficients.Comment: 8 pages, 1 eps figure, typos corrected and paragraphs rearranged. Accepted for publication in Physical Review

    Matter induced charge symmetry breaking and pion form factor in nuclear medium

    Full text link
    Medium modification of pion form factor has been evaluated in asymmetric nuclear matter. It is shown that both the shape and the pole position of the pion form factor in dense asymmetric nuclear matter is different from its vacuum counterpart with ρ\rho-ω\omega mixing. This is due to the density and asymmetry dependent ρ\rho-ω\omega mixing which could even dominate over its vacuum counterpart in matter. Effect of the in-medium pion factor on experimental observables {\it e.g.}, invariant mass distribution of lepton pairs has been demonstrated.Comment: Final Version to appear in Jour. Phys.

    Thermal Radiation from Au + Au Collisions at \sqrt{s} = 200 GEV/A Energy

    Full text link
    The transverse momentum distribution of the direct photons measured by the PHENIX collaboration in Au+AuAu + Au collisions at s=200\sqrt{s}=200 GeV/A has been analyzed. It has been shown that the data can be reproduced reasonably well assuming a deconfined state of thermalized quarks and gluons with initial temperature more than the transition temperature for deconfinement inferred from lattice QCD. The value of the initial temperature depends on the equation of state of the evolving matter. The sensitivities of the results on various input parameters have been studied. The effects of the modifications of hadronic properties at non-zero temperature have been discussed.Comment: minor modifications in the text, accepted for publicatio

    Aspects of meson properties in dense nuclear matter

    Get PDF
    We investigate the modification of meson spectral densities in dense nuclear matter at zero temperature. These effects are studied in a fully relativistic mean field model which goes beyond the linear density approximation and also includes baryon resonances. In particular, the role of N*(1520) and N*(1720) on the rho meson spectral density is highlighted. Even though the nucleon-nucleon loop and the nucleon-resonance loop contribute with the opposite sign, an overall reduction of rho meson mass is still observed at high density. Importantly, it is shown that the resonances cause substantial broadening of the rho meson spectral density in matter and also induces non-trivial momentum dependence. The spectral density of the a0 meson is also shown. We study the dispersion relations and collective oscillations induced by the rho meson propagation in nuclear matter together with the influence of the mixing of rho with the a0 meson. The relevant expression for the plasma frequency is also recovered analytically in the appropriate limit.Comment: 19 pages, 17 figure

    Normal Utilization as the Adjusting Variable in Neo-Kaleckian Growth Models: A Critique

    Get PDF
    As well-known, the canonical Neo-Kaleckian growth model fails to reconcile actual and normal rates of utilization in equilibrium. Some recent contributions revive an old proposal for solving this problem – making the normal rate of utilization an endogenous variable that converges to the actual utilization rate – justifying it with new, micro-founded premises. We argue that these new justifications for the convergence of normal to actual utilization do not stand closer scrutiny. First, the proposed microeconomic model relies on various restrictive assumptions, some of which are mutually inconsistent. Second, the derivation of the macroeconomic adjustment mechanism from the microeconomic analysis involves a logical leap, that can be justified only by a very arbitrary assumption with little economic justification. Finally, we discuss the way in which this mechanism has been incorporated into the Neo-Kaleckian growth model by proposers of this approach. We show that, even if one puts aside, for the sake of argument, the first two points, the existence of autonomous components of demand is sufficient to invalidate the resulting macroeconomic model
    corecore