570 research outputs found
A profiling analysis of contributions of cigarette smoking, dietary calcium intakes, and physical activity to fragility fracture in the elderly
Fragility fracture and bone mineral density (BMD) are influenced by common and modifiable lifestyle factors. In this study, we sought to define the contribution of lifestyle factors to fracture risk by using a profiling approach. The study involved 1683 women and 1010 men (50+ years old, followed up for up to 20 years). The incidence of new fractures was ascertained by X-ray reports. A “lifestyle risk score” (LRS) was derived as the weighted sum of effects of dietary calcium intake, physical activity index, and cigarette smoking. Each individual had a unique LRS, with higher scores being associated with a healthier lifestyle. Baseline values of lifestyle factors were assessed. In either men or women, individuals with a fracture had a significantly lower age-adjusted LRS than those without a fracture. In men, each unit lower in LRS was associated with a 66% increase in the risk of total fracture (non-adjusted hazard ratio [HR] 1.66; 95% CI, 1.26 to 2.20) and still significant after adjusting for age, weight or BMD. However, in women, the association was uncertain (HR 1.30; 95% CI, 1.11 to 1.53). These data suggest that unhealthy lifestyle habits are associated with an increased risk of fracture in men, but not in women, and that the association is mediated by BMD
Winners and losers: Ecological and biogeochemical changes in a warming ocean
We employ a marine ecosystem model, with diverse and flexible phytoplankton communities, coupled to an Earth system model of intermediate complexity to explore mechanisms that will alter the biogeography and productivity of phytoplankton populations in a warming world. Simple theoretical frameworks and sensitivity experiments reveal that ecological and biogeochemical changes are driven by a balance between two impacts of a warming climate: higher metabolic rates (the “direct” effect), and changes in the supply of limiting nutrients and altered light environments (the “indirect” effect). On globally integrated productivity, the two effects compensate to a large degree. Regionally, the competition between effects is more complicated; patterns of productivity changes are different between high and low latitudes and are also regulated by how the supply of the limiting nutrient changes. These complex regional patterns are also found in the changes to broad phytoplankton functional groups. On the finer ecological scale of diversity within functional groups, we find that ranges of some phytoplankton types are reduced, while those of others (potentially minor players in the present ocean) expand. Combined change in areal extent of range and in regionally available nutrients leads to global “winners and losers.” The model suggests that the strongest and most robust signal of the warming ocean is likely to be the large turnover in local phytoplankton community composition.United States. Dept. of Energy. Office of Science (Grant DE-FG02-94ER61937)United States. National Oceanic and Atmospheric AdministrationGordon and Betty Moore Foundatio
Calculating energy derivatives for quantum chemistry on a quantum computer
Modeling chemical reactions and complicated molecular systems has been
proposed as the `killer application' of a future quantum computer. Accurate
calculations of derivatives of molecular eigenenergies are essential towards
this end, allowing for geometry optimization, transition state searches,
predictions of the response to an applied electric or magnetic field, and
molecular dynamics simulations. In this work, we survey methods to calculate
energy derivatives, and present two new methods: one based on quantum phase
estimation, the other on a low-order response approximation. We calculate
asymptotic error bounds and approximate computational scalings for the methods
presented. Implementing these methods, we perform the world's first geometry
optimization on an experimental quantum processor, estimating the equilibrium
bond length of the dihydrogen molecule to within 0.014 Angstrom of the full
configuration interaction value. Within the same experiment, we estimate the
polarizability of the H2 molecule, finding agreement at the equilibrium bond
length to within 0.06 a.u. (2% relative error).Comment: 19 pages, 1 page supplemental, 7 figures. v2 - tidied up and added
example to appendice
- …